Skip to main content

Advertisement

Log in

Hsp70-1: upregulation via selective phosphorylation of heat shock factor 1 during coxsackieviral infection and promotion of viral replication via the AU-rich element

Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Coxsackievirus B3 (CVB3) is the primary pathogen of viral myocarditis. Upon infection, CVB3 exploits the host cellular machineries, such as chaperone proteins, to benefit its own infection cycles. Inducible heat shock 70-kDa proteins (Hsp70s) are chaperone proteins induced by various cellular stress conditions. The internal ribosomal entry site (IRES) within Hsp70 mRNA allows Hsp70 to be translated cap-independently during CVB3 infection when global cap-dependent translation is compromised. The Hsp70 protein family contains two major members, Hsp70-1 and Hsp70-2. This study showed that Hsp70-1, but not Hsp70-2, was upregulated during CVB3 infection both in vitro and in vivo. Then a novel mechanism of Hsp70-1 induction was revealed in which CaMKIIγ is activated by CVB3 replication and leads to phosphorylation of heat shock factor 1 (HSF1) specifically at Serine 230, which enhances Hsp70-1 transcription. Meanwhile, phosphorylation of Ser230 induces translocation of HSF1 from the cytoplasm to nucleus, thus blocking the ERK1/2-mediated phosphorylation of HSF1 at Ser307, a negative regulatory process of Hsp70 transcription, further contributing to Hsp70-1 upregulation. Finally, we demonstrated that Hsp70-1 upregulation, in turn, stabilizes CVB3 genome via the AU-rich element (ARE) harbored in the 3′ untranslated region of CVB3 genomic RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Beck MA, Chapman NM, McManus BM, Mullican JC, Tracy S (1990) Secondary enterovirus infection in the murine model of myocarditis. Pathologic and immunologic aspects. Am J Pathol 136(3):669–681

    PubMed Central  CAS  PubMed  Google Scholar 

  2. McManus BM, Chow LH, Radio SJ, Tracy SM, Beck MA, Chapman NM, Klingel K, Kandolf R (1991) Progress and challenges in the pathological diagnosis of myocarditis. Eur Heart J 12(Suppl D):18–21

    Article  PubMed  Google Scholar 

  3. McManus BM, Yanagawa B, Rezai N, Luo H, Taylor L, Zhang M, Yuan J, Buckley J, Triche T, Schreiner G, Yang D (2002) Genetic determinants of coxsackievirus B3 pathogenesis. Ann N Y Acad Sci 975:169–179

    Article  CAS  PubMed  Google Scholar 

  4. Joachims M, Van Breugel PC, Lloyd RE (1999) Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73(1):718–727

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Chau DH, Yuan J, Zhang H, Cheung P, Lim T, Liu Z, Sall A, Yang D (2007) Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis 12(3):513–524. doi:10.1007/s10495-006-0013-0

    Article  CAS  PubMed  Google Scholar 

  6. Etchison D, Milburn SC, Edery I, Sonenberg N, Hershey JW (1982) Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257(24):14806–14810

    CAS  PubMed  Google Scholar 

  7. Lamphear BJ, Yan R, Yang F, Waters D, Liebig HD, Klump H, Kuechler E, Skern T, Rhoads RE (1993) Mapping the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human Coxsackievirus and rhinovirus. J Biol Chem 268(26):19200–19203

    CAS  PubMed  Google Scholar 

  8. van Ooij MJ, Polacek C, Glaudemans DH, Kuijpers J, van Kuppeveld FJ, Andino R, Agol VI, Melchers WJ (2006) Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element. Nucleic Acids Res 34(10):2953–2965. doi:10.1093/nar/gkl349

    Article  PubMed Central  PubMed  Google Scholar 

  9. Snoeckx LH, Cornelussen RN, Van Nieuwenhoven FA, Reneman RS, Van Der Vusse GJ (2001) Heat shock proteins and cardiovascular pathophysiology. Physiol Rev 81(4):1461–1497

    CAS  PubMed  Google Scholar 

  10. Woo SK, Lee SD, Na KY, Park WK, Kwon HM (2002) TonEBP/NFAT5 stimulates transcription of HSP70 in response to hypertonicity. Mol Cell Biol 22(16):5753–5760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Iordanskiy S, Zhao Y, Dubrovsky L, Iordanskaya T, Chen M, Liang D, Bukrinsky M (2004) Heat shock protein 70 protects cells from cell cycle arrest and apoptosis induced by human immunodeficiency virus type 1 viral protein R. J Virol 78(18):9697–9704. doi:10.1128/JVI.78.18.9697-9704.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Agostini I, Popov S, Li J, Dubrovsky L, Hao T, Bukrinsky M (2000) Heat-shock protein 70 can replace viral protein R of HIV-1 during nuclear import of the viral preintegration complex. Exp Cell Res 259(2):398–403. doi:10.1006/excr.2000.4992

    Article  CAS  PubMed  Google Scholar 

  13. Choukhi A, Ung S, Wychowski C, Dubuisson J (1998) Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol 72(5):3851–3858

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Oh WK, Song J (2006) Hsp70 functions as a negative regulator of West Nile virus capsid protein through direct interaction. Biochem Biophys Res Commun 347(4):994–1000. doi:10.1016/j.bbrc.2006.06.190

    Article  CAS  PubMed  Google Scholar 

  15. Oglesbee MJ, Kenney H, Kenney T, Krakowka S (1993) Enhanced production of morbillivirus gene-specific RNAs following induction of the cellular stress response in stable persistent infection. Virology 192(2):556–567. doi:10.1006/viro.1993.1072

    Article  CAS  PubMed  Google Scholar 

  16. Padmini E, Lavanya S (2011) Over expression of HSP70 and HSF1 in endothelial cells during pre-eclamptic placental stress. Aust N Z J Obstet Gynaecol 51(1):47–52. doi:10.1111/j.1479-828X.2010.01246.x

    Article  PubMed  Google Scholar 

  17. Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22(20):5446–5458. doi:10.1093/emboj/cdg529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20(14):3800–3810. doi:10.1093/emboj/20.14.3800

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133(3):462–474. doi:10.1016/j.cell.2008.02.048

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hudmon A, Schulman H (2002) Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J 364(Pt 3):593–611. doi:10.1042/BJ20020228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (2005) Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 123(5):849–860. doi:10.1016/j.cell.2005.10.029

    Article  CAS  PubMed  Google Scholar 

  22. Liu G, Yang Y, Gu Q (2000) The effect of coxsackie virus B3 on intracellular calcium homeostasis in rat cardiomyocytes. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 14(2):113–116

    CAS  PubMed  Google Scholar 

  23. Bozym RA, Morosky SA, Kim KS, Cherry S, Coyne CB (2010) Release of intracellular calcium stores facilitates coxsackievirus entry into polarized endothelial cells. PLoS Pathog 6(10):e1001135. doi:10.1371/journal.ppat.1001135

    Article  PubMed Central  PubMed  Google Scholar 

  24. Melling CW, Krause MP, Noble EG (2006) PKA-mediated ERK1/2 inactivation and hsp70 gene expression following exercise. J Mol Cell Cardiol 41(5):816–822. doi:10.1016/j.yjmcc.2006.05.010

    Article  CAS  PubMed  Google Scholar 

  25. Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271(48):30847–30857

    Article  CAS  PubMed  Google Scholar 

  26. Esfandiarei M, Luo H, Yanagawa B, Suarez A, Dabiri D, Zhang J, McManus BM (2004) Protein kinase B/Akt regulates coxsackievirus B3 replication through a mechanism which is not caspase dependent. J Virol 78(8):4289–4298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Luo H, Yanagawa B, Zhang J, Luo Z, Zhang M, Esfandiarei M, Carthy C, Wilson JE, Yang D, McManus BM (2002) Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76(7):3365–3373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Henics T, Nagy E, Oh HJ, Csermely P, von Gabain A, Subjeck JR (1999) Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem 274(24):17318–17324

    Article  CAS  PubMed  Google Scholar 

  29. He C, Schneider R (2006) 14-3-3sigma is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay. EMBO J 25(16):3823–3831. doi:10.1038/sj.emboj.7601264

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Laroia G, Cuesta R, Brewer G, Schneider RJ (1999) Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 284(5413):499–502

    Article  CAS  PubMed  Google Scholar 

  31. Kishor A, Tandukar B, Ly YV, Toth EA, Suarez Y, Brewer G, Wilson GM (2013) Hsp70 is a novel posttranscriptional regulator of gene expression that binds and stabilizes selected mRNAs containing AU-rich elements. Mol Cell Biol 33(1):71–84. doi:10.1128/MCB.01275-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Zeng XC, Bhasin S, Wu X, Lee JG, Maffi S, Nichols CJ, Lee KJ, Taylor JP, Greene LE, Eisenberg E (2004) Hsp70 dynamics in vivo: effect of heat shock and protein aggregation. J Cell Sci 117(Pt 21):4991–5000. doi:10.1242/jcs.01373

    Article  CAS  PubMed  Google Scholar 

  33. Lund N, Milev MP, Wong R, Sanmuganantham T, Woolaway K, Chabot B, Abou Elela S, Mouland AJ, Cochrane A (2012) Differential effects of hnRNP D/AUF1 isoforms on HIV-1 gene expression. Nucleic Acids Res 40(8):3663–3675. doi:10.1093/nar/gkr1238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ye X, Zhang HM, Qiu Y, Hanson PJ, Hemida MG, Wei W, Hoodless PA, Chu F, Yang D (2014) Coxsackievirus-induced miR-21 disrupts cardiomyocyte interactions via the downregulation of intercalated disk components. PLoS Pathog 10(4):e1004070. doi:10.1371/journal.ppat.1004070

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kim D, Kim SH, Li GC (1999) Proteasome inhibitors MG132 and lactacystin hyperphosphorylate HSF1 and induce hsp70 and hsp27 expression. Biochem Biophys Res Commun 254(1):264–268. doi:10.1006/bbrc.1998.9840

    Article  CAS  PubMed  Google Scholar 

  36. Tokumitsu H, Chijiwa T, Hagiwara M, Mizutani A, Terasawa M, Hidaka H (1990) KN-62, 1-[N, O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazi ne, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 265(8):4315–4320

    CAS  PubMed  Google Scholar 

  37. Yoon YJ, Kim JA, Shin KD, Shin DS, Han YM, Lee YJ, Lee JS, Kwon BM, Han DC (2011) KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem 286(3):1737–1747. doi:10.1074/jbc.M110.179440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Tombes RM, Faison MO, Turbeville JM (2003) Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. Gene 322:17–31

    Article  CAS  PubMed  Google Scholar 

  39. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The delta isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106(7):2342–2347. doi:10.1073/pnas.0813013106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Peng W, Zhang Y, Zheng M, Cheng H, Zhu W, Cao CM, Xiao RP (2010) Cardioprotection by CaMKII-deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70. Circ Res 106(1):102–110. doi:10.1161/CIRCRESAHA.109.210914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. van Kuppeveld FJ, Hoenderop JG, Smeets RL, Willems PH, Dijkman HB, Galama JM, Melchers WJ (1997) Coxsackievirus protein 2B modifies endoplasmic reticulum membrane and plasma membrane permeability and facilitates virus release. EMBO J 16(12):3519–3532. doi:10.1093/emboj/16.12.3519

    Article  PubMed Central  PubMed  Google Scholar 

  42. Wagner BJ, DeMaria CT, Sun Y, Wilson GM, Brewer G (1998) Structure and genomic organization of the human AUF1 gene: alternative pre-mRNA splicing generates four protein isoforms. Genomics 48(2):195–202. doi:10.1006/geno.1997.5142

    Article  CAS  PubMed  Google Scholar 

  43. Gulbahar MY, Kabak YB, Karayigit MO, Yarim M, Guvenc T, Parlak U (2011) The expressions of HSP70 and alphaB-crystallin in myocarditis associated with foot-and-mouth disease virus in lambs. J Vet Sci 12(1):65–73

    Article  PubMed Central  PubMed  Google Scholar 

  44. Broquet AH, Lenoir C, Gardet A, Sapin C, Chwetzoff S, Jouniaux AM, Lopez S, Trugnan G, Bachelet M, Thomas G (2007) Hsp70 negatively controls rotavirus protein bioavailability in caco-2 cells infected by the rotavirus RF strain. J Virol 81(3):1297–1304. doi:10.1128/JVI.01336-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ye J, Chen Z, Zhang B, Miao H, Zohaib A, Xu Q, Chen H, Cao S (2013) Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication. PLoS One 8(9):e75188. doi:10.1371/journal.pone.0075188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Liu J, Bai J, Zhang L, Jiang Z, Wang X, Li Y, Jiang P (2013) Hsp70 positively regulates porcine circovirus type 2 replication in vitro. Virology 447(1–2):52–62. doi:10.1016/j.virol.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  47. Kim MY, Ma Y, Zhang Y, Li J, Shu Y, Oglesbee M (2013) hsp70-dependent antiviral immunity against cytopathic neuronal infection by vesicular stomatitis virus. J Virol 87(19):10668–10678. doi:10.1128/JVI.00872-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kumar M, Rawat P, Khan SZ, Dhamija N, Chaudhary P, Ravi DS, Mitra D (2011) Reciprocal regulation of human immunodeficiency virus-1 gene expression and replication by heat shock proteins 40 and 70. J Mol Biol 410(5):944–958. doi:10.1016/j.jmb.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  49. Gratacos FM, Brewer G (2010) The role of AUF1 in regulated mRNA decay. Wiley Interdiscip Rev RNA 1(3):457–473. doi:10.1002/wrna.26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Wilson GM, Sutphen K, Bolikal S, Chuang KY, Brewer G (2001) Thermodynamics and kinetics of Hsp70 association with A + U-rich mRNA-destabilizing sequences. J Biol Chem 276(48):44450–44456. doi:10.1074/jbc.M108521200

    Article  CAS  PubMed  Google Scholar 

  51. Lu JY, Bergman N, Sadri N, Schneider RJ (2006) Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA 12(5):883–893. doi:10.1261/rna.2308106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tan W, Schwartz S (1995) The Rev protein of human immunodeficiency virus type 1 counteracts the effect of an AU-rich negative element in the human papillomavirus type 1 late 3′ untranslated region. J Virol 69(5):2932–2945

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Juhasz K, Lipp AM, Nimmervoll B, Sonnleitner A, Hesse J, Haselgruebler T, Balogi Z (2013) The complex function of hsp70 in metastatic cancer. Cancers 6(1):42–66. doi:10.3390/cancers6010042

    Article  PubMed Central  PubMed  Google Scholar 

  54. Juhasz K, Thuenauer R, Spachinger A, Duda E, Horvath I, Vigh L, Sonnleitner A, Balogi Z (2013) Lysosomal rerouting of Hsp70 trafficking as a potential immune activating tool for targeting melanoma. Curr Pharm Des 19(3):430–440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Canadian Institutes of Health Research (Grant # MOP-125995). Xin Ye is a recipient of the UGF Award from the University of British Columbia. Jeff Zong and Brian Cho were supported by the Pathology Summer Student Program of the University. We would like to thank Dr. Lois Greene at NIH for providing us the Hsp70-1 plasmids and Dr. Robert J. Schneider at New York University for providing us the AUF1 plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Decheng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Ye, X., Hanson, P.J. et al. Hsp70-1: upregulation via selective phosphorylation of heat shock factor 1 during coxsackieviral infection and promotion of viral replication via the AU-rich element. Cell. Mol. Life Sci. 73, 1067–1084 (2016). https://doi.org/10.1007/s00018-015-2036-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2036-6

Keywords

Navigation