Skip to main content
Log in

A role for retromer in hepatitis C virus replication

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hepatitis C virus (HCV) has infected over 170 million people worldwide. Phosphatidylinositol 4-phosphate (PI4P) is the organelle-specific phosphoinositide enriched at sites of HCV replication. Whether retromer, a PI4P-related host transport machinery, unloads its cargo at HCV replication sites remains inconclusive. We sought to characterize the role of retromer in HCV replication. Here, we demonstrated the interaction between retromer subunit Vps35 and HCV NS5A protein by immunoprecipitation and GST pulldown. Vps35 colocalized with NS5A and PI4P in both OR6 replicon and JFH1 infected Huh 7.5.1 cells. HCV replication was inhibited upon silencing retromer subunits. CIMPR, a typical retromer cargo, participated in HCV replication. Our data suggest that retromer component Vps35 is recruited by NS5A to viral replication sites where PI4P unloads CIMPR. These findings demonstrate a dependence role of retromer in HCV replication and identify retromer as a potential therapeutic target against HCV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HCV:

Hepatitis C virus

PI4P:

Phosphatidylinositol 4-phosphate

PI4KA:

Phosphatidylinositol 4-kinase A

TGN:

trans-Golgi network

CIMPR:

Cation-independent mannose-6-phosphate receptor

HVS:

Herpesvirus saimiri

HPV:

Human papillomaviruses

HIV-1:

Human immunodeficiency virus type-1

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

DAPI:

4′,6-diamidino-2-phenylindole

qPCR:

Quantitative PCR

References

  1. Lavanchy D (2011) Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect 17:107–115

    Article  CAS  PubMed  Google Scholar 

  2. Bianco A, Reghellin V, Donnici L, Fenu S, Alvarez R, Baruffa C, Peri F, Pagani M, Abrignani S, Neddermann P, De Francesco R (2012) Metabolism of phosphatidylinositol 4-kinase III α-dependent PI4P Is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog 8:e1002576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hsu NY, Ilnytska O, Belov G, Santiana M, Chen YH, Takvorian PM, Pau C, van der Schaar H, Kaushik-Basu N, Balla T, Cameron CE, Ehrenfeld E, van Kuppeveld FJ, Altan-Bonnet N (2010) Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141:799–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Reiss S, Rebhan I, Backes P, Romero-Brey I, Erfle H, Matula P, Kaderali L, Poenisch M, Blankenburg H, Hiet MS, Longerich T, Diehl S, Ramirez F, Balla T, Rohr K, Kaul A, Buhler S, Pepperkok R, Lengauer T, Albrecht M, Eils R, Schirmacher P, Lohmann V, Bartenschlager R (2011) Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 9:32–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Hong Z, Yang X, Yang G, Zhang L (2014) Hepatitis C virus NS5A competes with PI4KB for binding to ACBD3 in a genotype-dependent manner. Antiviral Res 107:50–55

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Yang X, Yang G, Hong Z, Zhou L, Yin P, Xiao Y, Chen L, Chung RT, Zhang L (2014) Hepatitis C virus NS5A hijacks ARFGAP1 to maintain a phosphatidylinositol 4-phosphate-enriched microenvironment. J Virol 88:5956–5966

    Article  PubMed Central  PubMed  Google Scholar 

  7. Tai AW, Salloum S (2011) The role of the phosphatidylinositol 4-kinase PI4KA in hepatitis C virus-induced host membrane rearrangement. PLoS ONE 6:e26300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Berger KL, Kelly SM, Jordan TX, Tartell MA, Randall G (2011) Hepatitis C virus stimulates the phosphatidylinositol 4-kinase IIIα-dependent phosphatidylinositol 4-phosphate production that is essential for its replication. J Virol 85:8870–8883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lim YS, Hwang SB (2011) Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIα and regulates viral propagation. J Biol Chem 286:11290–11298

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Amako Y, Syed GH, Siddiqui A (2011) Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein. J Biol Chem 286:11265–11274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Bishe B, Syed GH, Field SJ, Siddiqui A (2012) Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in HCV secretion. J Biol Chem 287:27637–27647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Wang H, Perry JW, Lauring AS, Neddermann P, De Francesco R, Tai AW (2014) Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking. Gastroenterology 146:1373–1385.e1-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Amako Y, Sarkeshik A, Hotta H, Yates J 3rd, Siddiqui A (2009) Role of oxysterol binding protein in hepatitis C virus infection. J Virol 83:9237–9246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Khan I, Katikaneni DS, Han Q, Sanchez-Felipe L, Hanada K, Ambrose RL, Mackenzie JM, Konan KV (2014) Modulation of hepatitis C virus genome replication by glycosphingolipids and four-phosphate adaptor protein 2. J Virol 88:12276–12295

    Article  PubMed Central  PubMed  Google Scholar 

  15. Niu Y, Zhang C, Sun Z, Hong Z, Li K, Sun D, Yang Y, Tian C, Gong W, Liu JJ (2013) PtdIns(4)P regulates retromer-motor interaction to facilitate dynein-cargo dissociation at the trans-Golgi network. Nat Cell Biol 15:417–429

    Article  CAS  PubMed  Google Scholar 

  16. Burd C, Cullen PJ (2014) Retromer: a master conductor of endosome sorting. Cold Spring Harb Perspect Biol 6:a016774

    Article  PubMed  Google Scholar 

  17. Bonifacino JS, Hurley JH (2008) Retromer. Curr Opin Cell Biol 20:427–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Seaman MN (2012) The retromer complex—endosomal protein recycling and beyond. J Cell Sci 125:4693–4702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kingston D, Chang H, Ensser A, Lee HR, Lee J, Lee SH, Jung JU, Cho NH (2011) Inhibition of retromer activity by herpesvirus saimiri tip leads to CD4 downregulation and efficient T cell transformation. J Virol 85:10627–10638

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lipovsky A, Popa A, Pimienta G, Wyler M, Bhan A, Kuruvilla L, Guie MA, Poffenberger AC, Nelson CD, Atwood WJ, DiMaio D (2013) Genome-wide siRNA screen identifies the retromer as a cellular entry factor for human papillomavirus. Proc Natl Acad Sci USA 110:7452–7457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Groppelli E, Len AC, Granger LA, Jolly C (2014) Retromer regulates HIV-1 envelope glycoprotein trafficking and incorporation into virions. PLoS Pathog 10:e1004518

    Article  PubMed Central  PubMed  Google Scholar 

  22. Popa A, Zhang W, Harrison MS, Goodner K, Kazakov T, Goodwin EC, Lipovsky A, Burd CG, DiMaio D (2015) Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection. PLoS Pathog 11:e1004699

    Article  PubMed Central  PubMed  Google Scholar 

  23. Zhang L, Hong Z, Lin W, Shao RX, Goto K, Hsu VW, Chung RT (2012) ARF1 and GBF1 generate a PI4P-enriched environment supportive of hepatitis C virus replication. PLoS ONE 7:e32135

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang L, Lee SY, Beznoussenko GV, Peters PJ, Yang JS, Gilbert HY, Brass AL, Elledge SJ, Isaacs SN, Moss B, Mironov A, Hsu VW (2009) A role for the host coatomer and KDEL receptor in early vaccinia biogenesis. Proc Natl Acad Sci USA 106:163–168

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bai M, Gad H, Turacchio G, Cocucci E, Yang JS, Li J, Beznoussenko GV, Nie Z, Luo R, Fu L, Collawn JF, Kirchhausen T, Luini A, Hsu VW (2011) ARFGAP1 promotes AP-2-dependent endocytosis. Nat Cell Biol 13:559–567

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Randall G, Panis M, Cooper JD, Tellinghuisen TL, Sukhodolets KE, Pfeffer S, Landthaler M, Landgraf P, Kan S, Lindenbach BD, Chien M, Weir DB, Russo JJ, Ju J, Brownstein MJ, Sheridan R, Sander C, Zavolan M, Tuschl T, Rice CM (2007) Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA 104:12884–12889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Follett J, Norwood SJ, Hamilton NA, Mohan M, Kovtun O, Tay S, Zhe Y, Wood SA, Mellick GD, Silburn PA, Collins BM, Bugarcic A, Teasdale RD (2014) The Vps35 D620N mutation linked to Parkinson’s disease disrupts the cargo sorting function of retromer. Traffic 15:230–244

    Article  CAS  PubMed  Google Scholar 

  28. Tai AW, Benita Y, Peng LF, Kim SS, Sakamoto N, Xavier RJ, Chung RT (2009) A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 5:298–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ross-Thriepland D, Harris M (2015) Hepatitis C virus NS5A: enigmatic but still promiscuous 10 years on! J Gen Virol 96:727–738

    Article  CAS  PubMed  Google Scholar 

  30. Seaman MN (2007) Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J Cell Sci 120:2378–2389

    Article  CAS  PubMed  Google Scholar 

  31. Orsel JG, Sincock PM, Krise JP, Pfeffer SR (2000) Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein. Proc Natl Acad Sci USA 97:9047–9051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Diaz E, Pfeffer SR (1998) TIP47: a cargo selection device for mannose 6-phosphate receptor trafficking. Cell 93:433–443

    Article  CAS  PubMed  Google Scholar 

  33. Ploen D, Hafirassou ML, Himmelsbach K, Schille SA, Biniossek ML, Baumert TF, Schuster C, Hildt E (2013) TIP47 is associated with the hepatitis C virus and its interaction with Rab9 is required for release of viral particles. Eur J Cell Biol 92:374–382

    Article  CAS  PubMed  Google Scholar 

  34. Vogt DA, Camus G, Herker E, Webster BR, Tsou CL, Greene WC, Yen TS, Ott M (2013) Lipid droplet-binding protein TIP47 regulates hepatitis C virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog 9:e1003302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ploen D, Hafirassou ML, Himmelsbach K, Sauter D, Biniossek ML, Weiss TS, Baumert TF, Schuster C, Hildt E (2013) TIP47 plays a crucial role in the life cycle of hepatitis C virus. J Hepatol 58:1081–1088

    Article  CAS  PubMed  Google Scholar 

  36. Matto M, Sklan EH, David N, Melamed-Book N, Casanova JE, Glenn JS, Aroeti B (2011) Role for ADP ribosylation factor 1 in the regulation of hepatitis C virus replication. J Virol 85:946–956

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Goueslain L, Alsaleh K, Horellou P, Roingeard P, Descamps V, Duverlie G, Ciczora Y, Wychowski C, Dubuisson J, Rouille Y (2010) Identification of GBF1 as a cellular factor required for hepatitis C virus RNA replication. J Virol 84:773–787

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Neveu G, Barouch-Bentov R, Ziv-Av A, Gerber D, Jacob Y, Einav S (2012) Identification and targeting of an interaction between a tyrosine motif within hepatitis C virus core protein and AP2M1 essential for viral assembly. PLoS Pathog 8:e1002845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Corless L, Crump CM, Griffin SD, Harris M (2010) Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J Gen Virol 91:362–372

    Article  CAS  PubMed  Google Scholar 

  40. Ariumi Y, Kuroki M, Maki M, Ikeda M, Dansako H, Wakita T, Kato N (2011) The ESCRT system is required for hepatitis C virus production. PLoS ONE 6:e14517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Dreux M, Garaigorta U, Boyd B, Decembre E, Chung J, Whitten-Bauer C, Wieland S, Chisari FV (2012) Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12:558–570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Tamai K, Shiina M, Tanaka N, Nakano T, Yamamoto A, Kondo Y, Kakazu E, Inoue J, Fukushima K, Sano K, Ueno Y, Shimosegawa T, Sugamura K (2012) Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. Virology 422:377–385

    Article  CAS  PubMed  Google Scholar 

  43. Harrison MS, Hung CS, Liu TT, Christiano R, Walther TC, Burd CG (2014) A mechanism for retromer endosomal coat complex assembly with cargo. Proc Natl Acad Sci USA 111:267–272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Seaman MN, Harbour ME, Tattersall D, Read E, Bright N (2009) Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 122:2371–2382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Manna D, Aligo J, Xu C, Park WS, Koc H, Heo WD, Konan KV (2010) Endocytic Rab proteins are required for hepatitis C virus replication complex formation. Virology 398:21–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from National Natural Science Foundation of China (81301438, 81271832, 81471955), National Science and Technology Major Project of China (2013ZX10004-601), Intramural Research Program of the Institute of Pathogen Biology, CAMS (2013IPB104), Program for Changjiang Scholars and Innovative Research Team in University (IRT13007), PUMC Youth Fund, the Fundamental Research Funds for the Central Universities (3332013118), and NIH (DK098079, AI082630, and DA033541). We thank Guangbo Yang for technical support. We thank Jing Wang for critical review of the manuscript. We thank Charles Rice, Francis Chisari, Masanori Ikeda, Nobuyuki Kato and Takaji Wakita for reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leiliang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

P. Yin and Z. Hong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Hong, Z., Yang, X. et al. A role for retromer in hepatitis C virus replication. Cell. Mol. Life Sci. 73, 869–881 (2016). https://doi.org/10.1007/s00018-015-2027-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2027-7

Keywords

Navigation