Skip to main content
Log in

Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The establishment of neuronal polarity and axonal outgrowth are key processes affecting neuronal migration and synapse formation, their impairment likely leading to cognitive deficits. Here we have found that the apoptotic protease activating factor 1 (Apaf1), apart from its canonical role in apoptosis, plays an additional function in cortical neurons, where its deficiency specifically impairs axonal growth. Given the central role played by centrosomes and microtubules in the polarized extension of the axon, our data suggest that Apaf1-deletion affects axonal outgrowth through an impairment of centrosome organization. In line with this, centrosomal protein expression, as well as their centrosomal localization proved to be altered upon Apaf1-deletion. Strikingly, we also found that Apaf1-loss affects trans-Golgi components and leads to a robust activation of AMP-dependent protein kinase (AMPK), this confirming the stressful conditions induced by Apaf1-deficiency. Since AMPK hyper-phosphorylation is known to impair a proper axon elongation, our finding contributes to explain the effect of Apaf1-deficiency on axogenesis. We also discovered that the signaling pathways mediating axonal growth and involving glycogen synthase kinase-3β, liver kinase B1, and collapsing-response mediator protein-2 are altered in Apaf1-KO neurons. Overall, our results reveal a novel non-apoptotic role for Apaf1 in axonal outgrowth, suggesting that the neuronal phenotype due to Apaf1-deletion could not only be fully ascribed to apoptosis inhibition, but might also be the result of defects in axogenesis. The discovery of new molecules involved in axonal elongation has a clinical relevance since it might help to explain neurological abnormalities occurring during early brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-dependent protein kinase

Apaf1:

Apoptotic protease activating factor 1

CRMP2:

Collapsing-response mediator protein-2

DIV:

Day in vitro

Diva:

Death inducer binding to vBcl2 and Apaf1

ETNA:

Embryonic telencephalic naïve Apaf1

Gap43:

Growth associated protein 43

GDI:

GDP dissociation inhibitor

GM130:

cis-Golgi marker

GSK3β:

Glycogen synthase kinase-3β

HCA66:

Hepatocellular carcinoma-associated antigen 66

I-MEFs:

Immortalized mouse embryonic fibroblasts

LKB1:

Liver kinase B1

MAP2:

Microtubule-associated protein 2

MAPs:

Microtubule-associated proteins

MARK:

Microtubule affinity-regulating kinase

NEDD1:

Neural precursor cell expressed developmentally down-regulated protein 1

NF1:

Neurofibromatosis type I

PCN:

Primary cortical neurons

PSD95:

Postsynaptic density protein 95

Rab8:

Ras-related in brain 8

Rab10:

Ras-related in brain 10

SMI312:

Pan-axonal neurofilament marker

Tau:

Tau protein

Tom20:

Translocase of outer membrane 20

Tubb3:

Tubulin, beta 3 class III

References

  1. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489

    Article  CAS  PubMed  Google Scholar 

  2. Mouhamad S, Galluzzi L, Zermati Y, Castedo M, Kroemer G (2007) Apaf-1 deficiency causes chromosomal instability. Cell Cycle 6(24):3103–3107

    Article  CAS  PubMed  Google Scholar 

  3. Ferraro E, Pesaresi MG, De Zio D, Cencioni MT, Gortat A, Cozzolino M, Berghella L, Salvatore AM, Oettinghaus B, Scorrano L, Perez-Paya E, Cecconi F (2011) Apaf1 plays a pro-survival role by regulating centrosome morphology and function. J Cell Sci 124(Pt 20):3450–3463. doi:10.1242/jcs.086298

    Article  CAS  PubMed  Google Scholar 

  4. Stiess M, Bradke F (2011) Neuronal polarization: the cytoskeleton leads the way. Dev Neurobiol 71(6):430–444. doi:10.1002/dneu.20849

    Article  CAS  PubMed  Google Scholar 

  5. Kuijpers M, Hoogenraad CC (2011) Centrosomes, microtubules and neuronal development. Mol Cell Neurosci 48(4):349–358. doi:10.1016/j.mcn.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  6. Higginbotham HR, Gleeson JG (2007) The centrosome in neuronal development. Trends Neurosci 30(6):276–283. doi:10.1016/j.tins.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  7. Distel M, Hocking JC, Volkmann K, Koster RW (2010) The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. J Cell Biol 191(4):875–890. doi:10.1083/jcb.201004154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. de Anda FC, Meletis K, Ge X, Rei D, Tsai LH (2010) Centrosome motility is essential for initial axon formation in the neocortex. J Neurosci 30(31):10391–10406. doi:10.1523/JNEUROSCI.0381-10.2010

    Article  PubMed  Google Scholar 

  9. Sutterlin C, Colanzi A (2010) The Golgi and the centrosome: building a functional partnership. J Cell Biol 188(5):621–628. doi:10.1083/jcb.200910001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120(Pt 22):3905–3910. doi:10.1242/jcs.015909

    Article  CAS  PubMed  Google Scholar 

  11. Villarroel-Campos D, Gastaldi L, Conde C, Caceres A, Gonzalez-Billault C (2014) Rab-mediated trafficking role in neurite formation. J Neurochem 129(2):240–248. doi:10.1111/jnc.12676

    Article  CAS  PubMed  Google Scholar 

  12. Trivedi N, Marsh P, Goold RG, Wood-Kaczmar A, Gordon-Weeks PR (2005) Glycogen synthase kinase-3beta phosphorylation of MAP1B at Ser1260 and Thr1265 is spatially restricted to growing axons. J Cell Sci 118(Pt 5):993–1005. doi:10.1242/jcs.01697

    Article  CAS  PubMed  Google Scholar 

  13. Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11(8):539–551. doi:10.1038/nrn2870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, Kaibuchi K (2002) CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol 4(8):583–591. doi:10.1038/ncb825

    CAS  PubMed  Google Scholar 

  15. Kimura T, Watanabe H, Iwamatsu A, Kaibuchi K (2005) Tubulin and CRMP-2 complex is transported via Kinesin-1. J Neurochem 93(6):1371–1382. doi:10.1111/j.1471-4159.2005.03063.x

    Article  CAS  PubMed  Google Scholar 

  16. Shelly M, Cancedda L, Heilshorn S, Sumbre G, Poo MM (2007) LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129(3):565–577. doi:10.1016/j.cell.2007.04.012

    Article  CAS  PubMed  Google Scholar 

  17. Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L (2013) Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun 4:1800. doi:10.1038/ncomms2820

    Article  PubMed  Google Scholar 

  18. Barnes AP, Lilley BN, Pan YA, Plummer LJ, Powell AW, Raines AN, Sanes JR, Polleux F (2007) LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129(3):549–563. doi:10.1016/j.cell.2007.03.025

    Article  CAS  PubMed  Google Scholar 

  19. Shackelford DB, Shaw RJ (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9(8):563–575. doi:10.1038/nrc2676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Amato S, Liu X, Zheng B, Cantley L, Rakic P, Man HY (2011) AMP-activated protein kinase regulates neuronal polarization by interfering with PI 3-kinase localization. Science 332(6026):247–251. doi:10.1126/science.1201678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Williams T, Courchet J, Viollet B, Brenman JE, Polleux F (2011) AMP-activated protein kinase (AMPK) activity is not required for neuronal development but regulates axogenesis during metabolic stress. Proc Natl Acad Sci USA 108(14):5849–5854. doi:10.1073/pnas.1013660108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Cozzolino M, Ferraro E, Ferri A, Rigamonti D, Quondamatteo F, Ding H, Xu ZS, Ferrari F, Angelini DF, Rotilio G, Cattaneo E, Carri MT, Cecconi F (2004) Apoptosome inactivation rescues proneural and neural cells from neurodegeneration. Cell Death Differ 11(11):1179–1191. doi:10.1038/sj.cdd.4401476

    Article  CAS  PubMed  Google Scholar 

  23. Ferraro E, Pulicati A, Cencioni MT, Cozzolino M, Navoni F, di Martino S, Nardacci R, Carri MT, Cecconi F (2008) Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell 19(8):3576–3588. doi:10.1091/mbc.E07-09-0858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94(6):727–737

    Article  CAS  PubMed  Google Scholar 

  25. Johnson CE, Huang YY, Parrish AB, Smith MI, Vaughn AE, Zhang Q, Wright KM, Van Dyke T, Wechsler-Reya RJ, Kornbluth S, Deshmukh M (2007) Differential Apaf-1 levels allow cytochrome c to induce apoptosis in brain tumors but not in normal neural tissues. Proc Natl Acad Sci USA 104(52):20820–20825. doi:10.1073/pnas.0709101105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wright KM, Smith MI, Farrag L, Deshmukh M (2007) Chromatin modification of Apaf-1 restricts the apoptotic pathway in mature neurons. J Cell Biol 179(5):825–832. doi:10.1083/jcb.200708086

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Leveille F, Papadia S, Fricker M, Bell KF, Soriano FX, Martel MA, Puddifoot C, Habel M, Wyllie DJ, Ikonomidou C, Tolkovsky AM, Hardingham GE (2010) Suppression of the intrinsic apoptosis pathway by synaptic activity. J Neurosci 30(7):2623–2635. doi:10.1523/JNEUROSCI.5115-09.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zheng S, Gray EE, Chawla G, Porse BT, O’Dell TJ, Black DL (2012) PSD-95 is post-transcriptionally repressed during early neural development by PTBP1 and PTBP2. Nat Neurosci 15(3):381–388, S381. doi:10.1038/nn.3026

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Mandell JW, Banker GA (1996) A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci 16(18):5727–5740

    CAS  PubMed  Google Scholar 

  30. Caceres A, Banker GA, Binder L (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J Neurosci 6(3):714–722

    CAS  PubMed  Google Scholar 

  31. Bradke F, Dotti CG (2000) Differentiated neurons retain the capacity to generate axons from dendrites. Curr Biol 10(22):1467–1470

    Article  CAS  PubMed  Google Scholar 

  32. Shaham S, Horvitz HR (1996) Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev 10(5):578–591

    Article  CAS  PubMed  Google Scholar 

  33. Pinan-Lucarre B, Gabel CV, Reina CP, Hulme SE, Shevkoplyas SS, Slone RD, Xue J, Qiao Y, Weisberg S, Roodhouse K, Sun L, Whitesides GM, Samuel A, Driscoll M (2012) The core apoptotic executioner proteins CED-3 and CED-4 promote initiation of neuronal regeneration in Caenorhabditis elegans. PLoS Biol 10(5):e1001331. doi:10.1371/journal.pbio.1001331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Piddubnyak V, Rigou P, Michel L, Rain JC, Geneste O, Wolkenstein P, Vidaud D, Hickman JA, Mauviel A, Poyet JL (2007) Positive regulation of apoptosis by HCA66, a new Apaf-1 interacting protein, and its putative role in the physiopathology of NF1 microdeletion syndrome patients. Cell Death Differ 14(6):1222–1233. doi:10.1038/sj.cdd.4402122

    Article  CAS  PubMed  Google Scholar 

  35. Fant X, Gnadt N, Haren L, Merdes A (2009) Stability of the small gamma-tubulin complex requires HCA66, a protein of the centrosome and the nucleolus. J Cell Sci 122(Pt 8):1134–1144. doi:10.1242/jcs.035238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou I (2005) The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci 118(Pt 15):3419–3430. doi:10.1242/jcs.02471

    Article  CAS  PubMed  Google Scholar 

  37. Hanus C, Ehlers MD (2008) Secretory outposts for the local processing of membrane cargo in neuronal dendrites. Traffic 9(9):1437–1445. doi:10.1111/j.1600-0854.2008.00775.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Beffert U, Dillon GM, Sullivan JM, Stuart CE, Gilbert JP, Kambouris JA, Ho A (2012) Microtubule plus-end tracking protein CLASP2 regulates neuronal polarity and synaptic function. J Neurosci 32(40):13906–13916. doi:10.1523/JNEUROSCI.2108-12.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Miller PM, Folkmann AW, Maia AR, Efimova N, Efimov A, Kaverina I (2009) Golgi-derived CLASP-dependent microtubules control Golgi organization and polarized trafficking in motile cells. Nat Cell Biol 11(9):1069–1080. doi:10.1038/ncb1920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wang T, Liu Y, Xu XH, Deng CY, Wu KY, Zhu J, Fu XQ, He M, Luo ZG (2011) Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Dev Cell 21(3):431–444. doi:10.1016/j.devcel.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  41. Sann S, Wang Z, Brown H, Jin Y (2009) Roles of endosomal trafficking in neurite outgrowth and guidance. Trends Cell Biol 19(7):317–324. doi:10.1016/j.tcb.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  42. Huber LA, Dupree P, Dotti CG (1995) A deficiency of the small GTPase rab8 inhibits membrane traffic in developing neurons. Mol Cell Biol 15(2):918–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Pfeffer S (2005) A model for Rab GTPase localization. Biochem Soc Trans 33(Pt 4):627–630. doi:10.1042/BST0330627

    Article  CAS  PubMed  Google Scholar 

  44. Sancho M, Gortat A, Herrera AE, Andreu-Fernandez V, Ferraro E, Cecconi F, Orzaez M, Perez-Paya E (2014) Altered mitochondria morphology and cell metabolism in Apaf1-deficient cells. PLoS ONE 9(1):e84666. doi:10.1371/journal.pone.0084666

    Article  PubMed Central  PubMed  Google Scholar 

  45. Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA (2009) The active form of the metabolic sensor: AMP-activated protein kinase (AMPK) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis. Cell Cycle 8(15):2385–2398

    Article  CAS  PubMed  Google Scholar 

  46. Fogarty S (1804) Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 3:581–591. doi:10.1016/j.bbapap.2009.09.012

    Google Scholar 

  47. Ohsawa S, Hamada S, Kuida K, Yoshida H, Igaki T, Miura M (2010) Maturation of the olfactory sensory neurons by Apaf-1/caspase-9-mediated caspase activity. Proc Natl Acad Sci USA 107(30):13366–13371. doi:10.1073/pnas.0910488107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Li J, Coven DL, Miller EJ, Hu X, Young ME, Carling D, Sinusas AJ, Young LH (2006) Activation of AMPK alpha- and gamma-isoform complexes in the intact ischemic rat heart. Am J Physiol Heart Circ Physiol 291(4):H1927–1934. doi:10.1152/ajpheart.00251.2006

    Article  CAS  PubMed  Google Scholar 

  49. Amato S, Man HY (2012) AMPK signaling in neuronal polarization: putting the brakes on axonal traffic of PI3-kinase. Commun Integr Biol 5(2):152–155. doi:10.4161/cib.18968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Asada N, Sanada K, Fukada Y (2007) LKB1 regulates neuronal migration and neuronal differentiation in the developing neocortex through centrosomal positioning. J Neurosci 27(43):11769–11775. doi:10.1523/JNEUROSCI.1938-07.2007

    Article  CAS  PubMed  Google Scholar 

  51. Son HS, Kwon HY, Sohn EJ, Lee JH, Woo HJ, Yun M, Kim SH, Kim YC (2013) Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 beta mediate ursolic acid induced apoptosis in HepG2 liver cancer cells. Phytother Res 27(11):1714–1722. doi:10.1002/ptr.4925

    Article  CAS  PubMed  Google Scholar 

  52. Zhang L, Jouret F, Rinehart J, Sfakianos J, Mellman I, Lifton RP, Young LH, Caplan MJ (2011) AMP-activated protein kinase (AMPK) activation and glycogen synthase kinase-3beta (GSK-3beta) inhibition induce Ca2+-independent deposition of tight junction components at the plasma membrane. J Biol Chem 286(19):16879–16890. doi:10.1074/jbc.M110.186932

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Suzuki T, Bridges D, Nakada D, Skiniotis G, Morrison SJ, Lin JD, Saltiel AR, Inoki K (2013) Inhibition of AMPK catabolic action by GSK3. Mol Cell 50(3):407–419. doi:10.1016/j.molcel.2013.03.022

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Choi SH, Kim YW, Kim SG (2010) AMPK-mediated GSK3beta inhibition by isoliquiritigenin contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem Pharmacol 79(9):1352–1362. doi:10.1016/j.bcp.2009.12.011

    Article  CAS  PubMed  Google Scholar 

  55. Lim JQ, Lu J, He BP (2012) Diva/BclB regulates differentiation by inhibiting NDPKB/Nm23H2-mediated neuronal differentiation in PC-12 cells. BMC Neurosci 13:123. doi:10.1186/1471-2202-13-123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Jenne DE, Tinschert S, Dorschner MO, Hameister H, Stephens K, Kehrer-Sawatzki H (2003) Complete physical map and gene content of the human NF1 tumor suppressor region in human and mouse. Genes Chromosom Cancer 37(2):111–120. doi:10.1002/gcc.10206

    Article  CAS  PubMed  Google Scholar 

  57. Gutmann DH, Parada LF, Silva AJ, Ratner N (2012) Neurofibromatosis type 1: modeling CNS dysfunction. J Neurosci 32(41):14087–14093. doi:10.1523/JNEUROSCI.3242-12.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Pasmant E, Sabbagh A, Spurlock G, Laurendeau I, Grillo E, Hamel MJ, Martin L, Barbarot S, Leheup B, Rodriguez D, Lacombe D, Dollfus H, Pasquier L, Isidor B, Ferkal S, Soulier J, Sanson M, Dieux-Coeslier A, Bieche I, Parfait B, Vidaud M, Wolkenstein P, Upadhyaya M, Vidaud D (2010) NF1 microdeletions in neurofibromatosis type 1: from genotype to phenotype. Hum Mutat 31(6):E1506–1518. doi:10.1002/humu.21271

    Article  CAS  PubMed  Google Scholar 

  59. Listernick R, Louis DN, Packer RJ, Gutmann DH (1997) Optic pathway gliomas in children with neurofibromatosis 1: consensus statement from the NF1 Optic Pathway Glioma Task Force. Ann Neurol 41(2):143–149. doi:10.1002/ana.410410204

    Article  CAS  PubMed  Google Scholar 

  60. Rosenfeld A, Listernick R, Charrow J, Goldman S (2010) Neurofibromatosis type 1 and high-grade tumors of the central nervous system. Child’s Nerv Syst 26(5):663–667. doi:10.1007/s00381-009-1024-2

    Article  Google Scholar 

  61. Brown JA, Diggs-Andrews KA, Gianino SM, Gutmann DH (2012) Neurofibromatosis-1 heterozygosity impairs CNS neuronal morphology in a cAMP/PKA/ROCK-dependent manner. Mol Cell Neurosci 49(1):13–22. doi:10.1016/j.mcn.2011.08.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Brown JA, Gianino SM, Gutmann DH (2010) Defective cAMP generation underlies the sensitivity of CNS neurons to neurofibromatosis-1 heterozygosity. J Neurosci 30(16):5579–5589. doi:10.1523/JNEUROSCI.3994-09.2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Patrakitkomjorn S, Kobayashi D, Morikawa T, Wilson MM, Tsubota N, Irie A, Ozawa T, Aoki M, Arimura N, Kaibuchi K, Saya H, Araki N (2008) Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. J Biol Chem 283(14):9399–9413. doi:10.1074/jbc.M708206200

    Article  CAS  PubMed  Google Scholar 

  64. Jauffred B, Llense F, Sommer B, Wang Z, Martin C, Bellaiche Y (2013) Regulation of centrosome movements by numb and the collapsin response mediator protein during Drosophila sensory progenitor asymmetric division. Development 140(13):2657–2668. doi:10.1242/dev.087338

    Article  CAS  PubMed  Google Scholar 

  65. Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89(1–2):115–124

    Article  CAS  PubMed  Google Scholar 

  66. Chang L, Jones Y, Ellisman MH, Goldstein LS, Karin M (2003) JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev Cell 4(4):521–533

    Article  CAS  PubMed  Google Scholar 

  67. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94(6):739–750

    Article  CAS  PubMed  Google Scholar 

  68. Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y, Nakazato K, Mochizuki A, Sakaue-Sawano A, Miyawaki A, Yoshida H, Kuida K, Miura M (2013) Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Dev Cell 27(6):621–634. doi:10.1016/j.devcel.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  69. Cusack CL, Swahari V, Hampton Henley W, Michael Ramsey J, Deshmukh M (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun 4:1876. doi:10.1038/ncomms2910

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian Ministry of Health (RF-2010-2318508 to E Ferraro, Institutional research–Ricerca corrente and GR-2008-1138121 to G Filomeni). We wish to thank MW Bennett for the valuable editorial work, V Frezza for technical support, and M Canossa, L. Cancedda, E. Santonico, N. Canu, L.Vitiello and M Racaniello for helpful discussions. We are also grateful to A Merdes (CNRS-Pierrre-Fabre, Toulouse, France) for kindly providing the HCA66 antibody.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Ferraro.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Zio, D., Molinari, F., Rizza, S. et al. Apaf1-deficient cortical neurons exhibit defects in axonal outgrowth. Cell. Mol. Life Sci. 72, 4173–4191 (2015). https://doi.org/10.1007/s00018-015-1927-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1927-x

Keywords

Navigation