Skip to main content
Log in

Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The vesicular transport pathways, which shuttle materials to and from the cell surface and within the cell, and the metabolic (growth factor and nutrient) signalling pathways, which integrate a variety of extracellular and intracellular signals to mediate growth, proliferation or survival, are both important for cellular physiology. There is evidence to suggest that the transport and metabolic signalling pathways intersect—vesicular transport can affect the regulation of metabolic signals and vice versa. The Rab family GTPases regulate the specificity of vesicular transport steps in the cell. Together with their interacting proteins, Rabs would likely constitute the points of intersection between vesicular transport and metabolic signalling pathways. Examples of these points would include growth factor signalling, glucose and lipid metabolism, as well as autophagy. Many of these processes involve mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1) in downstream cascades, or are regulated by TORC signalling. A general functionality of the vesicular transport processes controlled by the Rabs is also important for spatial and temporal regulation of the transmission of metabolic signals between the cell surface and the nucleus. In other cases, specific Rabs and their interacting proteins are known to function in recruiting metabolism-related proteins to target membranes, or may compete with other factors in the TORC signalling pathway as a means of metabolic regulation. We review and discuss herein examples of how Rabs and their interacting proteins can mediate metabolic signalling and regulation in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Segev N (2001) Ypt/rab gtpases: regulators of protein trafficking. Sci STKE 2001:RE11

    CAS  PubMed  Google Scholar 

  2. Hutagalung AH, Novick PJ (2011) Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91:119–149

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ullrich O et al (1993) Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J Biol Chem 268:18143–18150

    CAS  PubMed  Google Scholar 

  4. Dirac-Svejstrup AB, Sumizawa T, Pfeffer SR (1997) Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J 16:465–472

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ohya T et al (2009) Reconstitution of Rab- and SNARE-dependent membrane fusion by synthetic endosomes. Nature 459:1091–1097

    CAS  PubMed  Google Scholar 

  6. Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci USA 103:11821–11827

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Markgraf DF, Peplowska K, Ungermann C (2007) Rab cascades and tethering factors in the endomembrane system. FEBS Lett 581:2125–2130

    CAS  PubMed  Google Scholar 

  8. Seabra MC, Coudrier E (2004) Rab GTPases and myosin motors in organelle motility. Traffic 5:393–399

    CAS  PubMed  Google Scholar 

  9. Nottingham RM, Pfeffer SR (2009) Defining the boundaries: Rab GEFs and GAPs. Proc Natl Acad Sci USA 106:14185–14186

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sorkin A, von Zastrow M (2009) Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol 10:609–622

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Howe CL (2005) Modeling the signaling endosome hypothesis: why a drive to the nucleus is better than a (random) walk. Theor Biol Med Model 2:43

    PubMed  PubMed Central  Google Scholar 

  12. Dinneen JL, Ceresa BP (2004) Expression of dominant negative rab5 in HeLa cells regulates endocytic trafficking distal from the plasma membrane. Exp Cell Res 294:509–522

    CAS  PubMed  Google Scholar 

  13. Chen PI, Kong C, Su X, Stahl PD (2009) Rab5 isoforms differentially regulate the trafficking and degradation of epidermal growth factor receptors. J Biol Chem 284:30328–30338

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ceresa BP (2006) Regulation of EGFR endocytic trafficking by rab proteins. Histol Histopathol 21:987–993

    CAS  PubMed  Google Scholar 

  15. Kauppi M, Simonsen A, Bremnes B (2002) The small GTPase Rab22 interacts with EEA1 and controls endosomal membrane trafficking. J Cell Sci 115:899–911

    CAS  PubMed  Google Scholar 

  16. Ng EL, Ng JJ, Liang F, Tang BL (2009) Rab22B is expressed in the CNS astroglia lineage and plays a role in epidermal growth factor receptor trafficking in A431 cells. J Cell Physiol 221:716–728

    CAS  PubMed  Google Scholar 

  17. Chua CEL, Tang BL (2014) Engagement of the small GTPase Rab31 protein and its effector, early endosome antigen 1, is important for trafficking of the ligand-bound epidermal growth factor receptor from the early to the late endosome. J Biol Chem 289:12375–12389

    PubMed  PubMed Central  Google Scholar 

  18. Ceresa BP, Bahr SJ (2006) Rab7 activity affects epidermal growth factor: epidermal growth factor receptor degradation by regulating endocytic trafficking from the late endosome. J Biol Chem 281:1099–1106

    CAS  PubMed  Google Scholar 

  19. Cullis DN, Philip B, Baleja JD, Feig LA (2002) Rab11-FIP2, an adaptor protein connecting cellular components involved in internalization and recycling of epidermal growth factor receptors. J Biol Chem 277:49158–49166

    CAS  PubMed  Google Scholar 

  20. De Renzis S, Sönnichsen B, Zerial M (2002) Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. (3). Nat Cell Biol 4:124–133

    PubMed  Google Scholar 

  21. Chia WJ, Tang BL (2009) Emerging roles for Rab family GTPases in human cancer. Biochim Biophys Acta 1795:110–116

    CAS  PubMed  Google Scholar 

  22. Tomshine JC et al (2009) Cell proliferation and epidermal growth factor signaling in non-small cell lung adenocarcinoma cell lines are dependent on Rin1. (1). J Biol Chem 284:26331–26339

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kotzsch M et al (2008) Urokinase receptor splice variant uPAR-del4/5-associated gene expression in breast cancer: identification of rab31 as an independent prognostic factor. Breast Cancer Res Treat 111:229–240

    CAS  PubMed  Google Scholar 

  24. Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22:7279–7290

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang L, Liang Z, Li G (2011) Rab22 controls NGF signaling and neurite outgrowth in PC12 cells. Mol Biol Cell 22:3853–3860

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ueno H, Huang X, Tanaka Y, Hirokawa N (2011) KIF16B/Rab14 molecular motor complex is critical for early embryonic development by transporting FGF receptor. Dev Cell 20:60–71

    CAS  PubMed  Google Scholar 

  27. Mao X et al (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol 8:516–523

    CAS  PubMed  Google Scholar 

  28. Schenck A et al (2008) The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell 133:486–497

    CAS  PubMed  Google Scholar 

  29. Tan Y, You H, Wu C, Altomare DA, Testa JR (2010) Appl1 is dispensable for mouse development, and loss of Appl1 has growth factor-selective effects on Akt signaling in murine embryonic fibroblasts. J Biol Chem 285:6377–6389

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Banach-Orlowska M, Pilecka I, Torun A, Pyrzynska B, Miaczynska M (2009) Functional characterization of the interactions between endosomal adaptor protein APPL1 and the NuRD co-repressor complex. Biochem J 423:389–400

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Miaczynska M et al (2004) APPL proteins link Rab5 to nuclear signal transduction via an endosomal compartment. (1). Cell 116:445–456

    CAS  PubMed  Google Scholar 

  32. Scheepers A, Joost H, Schurmann A (2004) The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. J Parenter Enter Nutr 28:364–371

    CAS  Google Scholar 

  33. Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9

    CAS  PubMed  Google Scholar 

  34. Olson AL, Pessin JE (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16:235–256

    CAS  PubMed  Google Scholar 

  35. Thorens B, Sarkar HK, Kaback HR, Lodish HF (1988) Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55:281–290

    CAS  PubMed  Google Scholar 

  36. Nagamatsu S et al (1992) Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization. J Biol Chem 267:467–472

    CAS  PubMed  Google Scholar 

  37. Birnbaum MJ (1989) Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell 57:305–315

    CAS  PubMed  Google Scholar 

  38. Zeigerer A et al (2002) GLUT4 retention in adipocytes requires two intracellular insulin-regulated transport steps. Mol Biol Cell 13:2421–2435

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rea S, James DE (1997) Moving GLUT4: the biogenesis and trafficking of GLUT4 storage vesicles. Diabetes 46:1667–1677

    CAS  PubMed  Google Scholar 

  40. Sano H et al (2007) Rab10, a target of the AS160 Rab GAP, is required for insulin-stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab 5:293–303

    CAS  PubMed  Google Scholar 

  41. Mîinea CP et al (2005) AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. Biochem J 391:87–93

    PubMed  PubMed Central  Google Scholar 

  42. Larance M (2005) Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol Chem 280:37803–37813

    CAS  PubMed  Google Scholar 

  43. Huang J, Imamura T, Olefsky JM (2001) Insulin can regulate GLUT4 internalization by signaling to Rab5 and the motor protein dynein. Proc Natl Acad Sci 98:13084–13089

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Lodhi IJ et al (2007) Gapex-5, a Rab31 guanine nucleotide exchange factor that regulates Glut4 trafficking in adipocytes. Cell Metab 5:59–72

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Imamura T et al (2003) Insulin-induced GLUT4 translocation involves protein kinase C-lambda-mediated functional coupling between Rab4 and the motor protein kinesin. Mol Cell Biol 23:4892–4900

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li L (2001) Direct interaction of Rab4 with syntaxin 4. J Biol Chem 276:5265–5273

    CAS  PubMed  Google Scholar 

  47. Kane S et al (2002) A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J Biol Chem 277:22115–22118

    CAS  PubMed  Google Scholar 

  48. Sano H (2003) Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 translocation. J Biol Chem 278:14599–14602

    CAS  PubMed  Google Scholar 

  49. Leney SE, Tavaré JM (2009) The molecular basis of insulin-stimulated glucose uptake: signalling, trafficking and potential drug targets. J Endocrinol 203:1–18

    CAS  PubMed  Google Scholar 

  50. Ishikura S, Bilan PJ, Klip A (2007) Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun 353:1074–1079

    CAS  PubMed  Google Scholar 

  51. Sun Y, Bilan PJ, Liu Z, Klip A (2010) Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci 107:19909–19914

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishikura S, Klip A (2008) Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation. Am J Physiol Cell Physiol 295:C1016–C1025

    CAS  PubMed  Google Scholar 

  53. Sun Y, Chiu TT, Foley KP, Bilan PJ, Klip A (2014) Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Mol Biol Cell 25:1159–1170

    PubMed  PubMed Central  Google Scholar 

  54. Ishikura S, Koshkina A, Klip A (2008) Small G proteins in insulin action: Rab and Rho families at the crossroads of signal transduction and GLUT4 vesicle traffic. Acta Physiol (Oxf) 192:61–74

    CAS  Google Scholar 

  55. Sadacca LA, Bruno J, Wen J, Xiong W, McGraw TE (2013) Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Mol Biol Cell 24:2544–2557

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Reed SE et al (2013) A role for Rab14 in the endocytic trafficking of GLUT4 in 3T3-L1 adipocytes. J Cell Sci 126:1931–1941

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen Y et al (2012) Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes. J Cell Biol 198:545–560

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chavez JA, Roach WG, Keller SR, Lane WS, Lienhard GE (2008) Inhibition of GLUT4 translocation by Tbc1d1, a Rab GTPase-activating protein abundant in skeletal muscle, is partially relieved by AMP-activated protein kinase activation. J Biol Chem 283:9187–9195

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Szekeres F et al (2012) The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. Am J Physiol Endocrinol Metab 303:E524–E533

    CAS  PubMed  Google Scholar 

  60. Peck GR et al (2009) Insulin-stimulated phosphorylation of the Rab GTPase-activating protein TBC1D1 regulates GLUT4 translocation. J Biol Chem 284:30016–30023

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dokas J et al (2013) Conventional knockout of Tbc1d1 in mice impairs insulin- and AICAR-stimulated glucose uptake in skeletal muscle. Endocrinology 154:3502–3514

    CAS  PubMed  Google Scholar 

  62. Lansey MN, Walker NN, Hargett SR, Stevens JR, Keller SR (2012) Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis. Am J Physiol Endocrinol Metab 303:E1273–E1286

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Chadt A et al (2014) Deletion of both Rab-GTPase-activating proteins TBC1D1 and TBC1D4 in mice eliminates insulin- and AICAR-stimulated glucose transport. Diabetes. doi:10.2337/db14-0368

    PubMed  Google Scholar 

  64. Yamauchi T et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8:1288–1295

    CAS  PubMed  Google Scholar 

  65. Yamauchi T et al (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423:762–769

    CAS  PubMed  Google Scholar 

  66. Ding Q, Wang Z, Chen Y (2009) Endocytosis of adiponectin receptor 1 through a clathrin- and Rab5-dependent pathway. Cell Res 19:317–327

    CAS  PubMed  Google Scholar 

  67. Deepa SS, Dong LQ (2008) APPL1: role in adiponectin signaling and beyond. AJP Endocrinol Metab 296:E22–E36

    Google Scholar 

  68. Wang C et al (2009) Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells. (1). J Biol Chem 284:31608–31615

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng KKY et al (2014) The adaptor protein APPL2 inhibits insulin-stimulated glucose uptake by interacting with TBC1D1 in skeletal muscle. Diabetes 63:3748–3758

    CAS  PubMed  Google Scholar 

  70. King GJ et al (2012) Membrane curvature protein exhibits interdomain flexibility and binds a small GTPase. J Biol Chem 287:40996–41006

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Thiam AR, Farese RV, Walther TC (2013) The biophysics and cell biology of lipid droplets. Nat Rev Mol Cell Biol 14:775–786

    CAS  PubMed  Google Scholar 

  72. Krahmer N, Farese RV, Walther TC (2013) Balancing the fat: lipid droplets and human disease. EMBO Mol Med 5:905–915

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Stehr M, Elamin AA, Singh M (2012) Cytosolic lipid inclusions formed during infection by viral and bacterial pathogens. Microbes Infect 14:1227–1237

    CAS  PubMed  Google Scholar 

  74. Liu P et al (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J Biol Chem 279:3787–3792

    CAS  PubMed  Google Scholar 

  75. Brasaemle DL, Dolios G, Shapiro L, Wang R (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J Biol Chem 279:46835–46842

    CAS  PubMed  Google Scholar 

  76. Turró S et al (2006) Identification and characterization of associated with lipid droplet protein 1: a novel membrane-associated protein that resides on hepatic lipid droplets. Traffic 7:1254–1269

    PubMed  Google Scholar 

  77. Kiss RS, Nilsson T (2014) Rab proteins implicated in lipid storage and mobilization. J Biomed Res 28:169–177

    PubMed  PubMed Central  Google Scholar 

  78. Wilfling F, Haas JT, Walther TC, Farese RV (2014) Lipid droplet biogenesis. Curr Opin Cell Biol 29:39–45

    CAS  PubMed  Google Scholar 

  79. Robenek MJ et al (2004) Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J Off Publ Fed Am Soc Exp Biology 18:866–868

    CAS  Google Scholar 

  80. Robenek H et al (2006) Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 119:4215–4224

    CAS  PubMed  Google Scholar 

  81. Nevo-Yassaf I et al (2012) Role for TBC1D20 and Rab1 in hepatitis C virus replication via interaction with lipid droplet-bound nonstructural protein 5A. J Virol 86:6491–6502

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu P et al (2007) Rab-regulated interaction of early endosomes with lipid droplets. Biochim Biophys Acta 1773:784–793

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Weidberg H, Shvets E, Elazar Z (2009) Lipophagy: selective catabolism designed for lipids. Dev Cell 16:628–630

    CAS  PubMed  Google Scholar 

  84. Martin S, Driessen K, Nixon SJ, Zerial M, Parton RG (2005) Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J Biol Chem 280:42325–42335

    CAS  PubMed  Google Scholar 

  85. Pulido MR et al (2011) Rab18 dynamics in adipocytes in relation to lipogenesis, lipolysis and obesity. PLoS One 6:e22931

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Boström P et al (2007) SNARE proteins mediate fusion between cytosolic lipid droplets and are implicated in insulin sensitivity. Nat Cell Biol 9:1286–1293

    PubMed  Google Scholar 

  87. Salloum S, Wang H, Ferguson C, Parton RG, Tai AW (2013) Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog 9:e1003513

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Dansako H, Hiramoto H, Ikeda M, Wakita T, Kato N (2014) Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets. Virology 462–463:166–174

    PubMed  Google Scholar 

  89. Vogt DA et al (2013) Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog 9:e1003302

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Aivazian D, Serrano RL, Pfeffer S (2006) TIP47 is a key effector for Rab9 localization. J Cell Biol 173:917–926

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ploen D et al (2013) TIP47 is associated with the hepatitis C virus and its interaction with Rab9 is required for release of viral particles. Eur J Cell Biol 92:374–382

    CAS  PubMed  Google Scholar 

  92. You X et al (2013) Hepatitis B virus X protein upregulates oncogene Rab18 to result in the dysregulation of lipogenesis and proliferation of hepatoma cells. Carcinogenesis 34:1644–1652

    CAS  PubMed  Google Scholar 

  93. Wu L et al (2014) Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth. Dev Cell 30:378–393

    CAS  PubMed  Google Scholar 

  94. Xu L, Zhou L, Li P (2012) CIDE proteins and lipid metabolism. Arterioscler Thromb Vasc Biol 32:1094–1098

    CAS  PubMed  Google Scholar 

  95. Gong J et al (2011) Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. J Cell Biol 195:953–963

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    CAS  PubMed  Google Scholar 

  97. Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1:84–91

    CAS  PubMed  Google Scholar 

  98. Lipatova Z et al (2012) Regulation of selective autophagy onset by a Ypt/Rab GTPase module. Proc Natl Acad Sci 109:6981–6986

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fader CM, Sánchez D, Furlán M, Colombo MI (2008) Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic 9:230–250

    CAS  PubMed  Google Scholar 

  100. Longatti A et al (2012) TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol 197:659–675

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Munafo DB, Colombo MI (2002) Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic 3:472–482

    CAS  PubMed  Google Scholar 

  102. Mizushima N, Noda T, Ohsumi Y (1999) Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO J 18:3888–3896

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Itoh T et al (2008) Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 19:2916–2925

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M (2011) OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J Cell Biol 192:839–853

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Popovic D et al (2012) Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 32:1733–1744

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    CAS  PubMed  Google Scholar 

  107. Zoncu R et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science 334:678–683

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584:1287–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Avruch J et al (2009) Activation of mTORC1 in two steps: rheb-GTP activation of catalytic function and increased binding of substrates to raptor1. Biochem Soc Trans 37:223–226

    CAS  PubMed  Google Scholar 

  110. Sato T, Nakashima A, Guo L, Tamanoi F (2009) Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 284:12783–12791

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dazert E, Hall MN (2011) mTOR signaling in disease. Curr Opin Cell Biol 23:744–755

    CAS  PubMed  Google Scholar 

  112. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Robida-Stubbs S et al (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kim DH et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–176

    CAS  PubMed  Google Scholar 

  115. Sarbassov DD et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    CAS  PubMed  Google Scholar 

  116. Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829–1834

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Cai SL (2006) Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173:279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zoncu R et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. (1). Science 334:678–683

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sancak Y et al (2010) Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141:290–303

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Kamada Y et al (2005) Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol 25:7239–7248

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Cybulski N, Hall MN (2009) TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 34:620–627

    CAS  PubMed  Google Scholar 

  122. Sarbassov DD et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22:159–168

    CAS  PubMed  Google Scholar 

  123. Li L et al (2010) Regulation of mTORC1 by the Rab and Arf GTPases. J Biol Chem 285:19705–19709

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Durán RV, Hall MN (2012) Regulation of TOR by small GTPases. EMBO Rep 13:121–128

    PubMed  PubMed Central  Google Scholar 

  125. Bridges D et al (2012) Rab5 proteins regulate activation and localization of target of rapamycin complex 1. (1). J Biol Chem 287:20913–20921

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Roberts RL, Barbieri MA, Ullrich J, Stahl PD (2000) Dynamics of rab5 activation in endocytosis and phagocytosis. J Leukoc Biol 68:627–632

    CAS  PubMed  Google Scholar 

  127. Matsui T, Fukuda M (2013) Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep 14:450–457

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Luo L et al (2014) Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun 5:4407

    CAS  PubMed  Google Scholar 

  129. Tatebe H, Morigasaki S, Murayama S, Zeng CT, Shiozaki K (2010) Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. Curr Biol 20:1975–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tatebe H, Shiozaki K (2010) Rab small GTPase emerges as a regulator of TOR complex 2. Small GTPases 1:180–182

    PubMed  PubMed Central  Google Scholar 

  131. Martinez O, Schmidt A (1994) The small GTP-binding protein rab6 functions in intra-Golgi transport. J Cell Biol 127:1575–1588

    CAS  PubMed  Google Scholar 

  132. He Y et al (2006) Genetic and functional interaction between Ryh1 and Ypt3: two Rab GTPases that function in S. pombe secretory pathway. Genes Cells 11:207–221

    CAS  PubMed  Google Scholar 

  133. Marion RM (2004) Inaugural article: Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci 101:14315–14322

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Fingerman I, Nagaraj V, Norris D, Vershon AK (2003) Sfp1 plays a key role in yeast ribosome biogenesis. Eukaryot Cell 2:1061–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Lempiäinen H et al (2009) Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol Cell 33:704–716

    PubMed  Google Scholar 

  136. Singh J, Tyers M (2009) A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis. Genes Dev 23:1944–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhou QL et al (2008) Akt substrate TBC1D1 regulates GLUT1 expression through the mTOR pathway in 3T3-L1 adipocytes. Biochem J 411:647–655

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle En Lin Chua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, C.E.L., Tang, B.L. Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell. Mol. Life Sci. 72, 2289–2304 (2015). https://doi.org/10.1007/s00018-015-1862-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1862-x

Keywords

Navigation