Skip to main content
Log in

Immunogenicity of necrotic cell death

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The mode of tumor cell death has significant effects on anti-tumor immunity. Although, previously it was thought that cell death is an inert effect, different investigators have clearly shown that dying tumors can attract, activate and mature professional antigen presenting cells and dendritic cells. In addition, others and we have shown that the type of tumor cell death not only controls the presence or absence of specific tumor antigens, but also can result in immunological responses ranging from immunosuppression to anti-tumor immunity. More importantly, it is possible to enhance anti-tumor immunity both in vitro and in vivo by targeting specific molecular mechanisms such as oligopeptidases and the proteasome. These studies not only extend our knowledge on basic immunological questions and the induction of anti-tumor immunity, but also have implications for all types of cancer treatments, in which rapid tumor cell death is induced. This review is a comprehensive summary of cell death and particularly necrosis and the pivotal role it plays in anti-tumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DAMP:

Damage-associated molecular pattern molecules

PAMP:

Pathogen-associated molecular pattern molecules

IFN:

Interferon

HMGB1:

High mobility group box 1 protein

TNF:

Tumor necrosis factor

TLR:

Toll-like receptor

RIPK:

Receptor-interacting protein kinase

APC:

Antigen presenting cell

ICD:

Immunogenic cell death

ER:

Endoplasmic reticulum

ROS:

Reactive oxygen species

CRT:

Calreticulin

HSP:

Heat shock protein

LPS:

Lipopolysaccharide

RAGE:

Receptor for advanced glycosylation end product

IL:

Interleukin

RNP:

Ribonucleoproteins

PRR:

Pattern recognition receptor

DC:

Dendritic cell

DRiP:

Defective ribosomal product

OVA:

Ovalbumin

LAP:

Leuzin aminopeptidase

PSA:

Puromycine-sensitive aminopeptidase

BH:

Bleomycin hydrolase

TOP-1:

Thimet oligopeptidase 1

TPPII:

Tripeptidyl peptidase II

ERAP:

ER aminopeptidase

ERAAP:

ER aminopeptidase associated with antigen processing

DRibbles:

DRiPs-containing blebs

DPP-3:

Dipeptidyl peptidase 3

PEP:

Prolyl endopeptidase

Ag:

Antigen

References

  1. Ahrens S, Zelenay S et al (2012) F-Actin Is an Evolutionarily Conserved Damage-Associated Molecular Pattern Recognized by DNGR-1, a Receptor for Dead Cells. Immunity 36:635–645

    CAS  PubMed  Google Scholar 

  2. Albert ML, Sauter B et al (1998) Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392(6671):86–89

    CAS  PubMed  Google Scholar 

  3. Andersson U, Wang H et al (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192(4):565–570

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Apetoh L, Ghiringhelli F et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059

    CAS  PubMed  Google Scholar 

  5. Ashkenazi A, Dixit VM (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11(2):255–260

    CAS  PubMed  Google Scholar 

  6. Bartholomae WC, Rininsland FH et al (2004) T cell immunity induced by live, necrotic, and apoptotic tumor cells. J Immunol 173(2):1012–1022

    CAS  PubMed  Google Scholar 

  7. Bartlett DL, Liu Z et al (2013) Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer 12(1):103

    PubMed Central  PubMed  Google Scholar 

  8. Basta S, Stoessel R et al (2005) Cross-presentation of the long-lived lymphocytic choriomeningitis virus nucleoprotein does not require neosynthesis and is enhanced via heat shock proteins. J Immunol 175(2):796–805

    CAS  PubMed  Google Scholar 

  9. Basu S, Binder RJ et al (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12(11):1539–1546

    CAS  PubMed  Google Scholar 

  10. Beavis PA, Stagg J et al (2012) CD73: a potent suppressor of antitumor immune responses. Trends Immunol 33(5):231–237

    CAS  PubMed  Google Scholar 

  11. Beninga J, Rock KL et al (1998) Interferon-gamma can stimulate post-proteasomal trimming of the N terminus of an antigenic peptide by inducing leucine aminopeptidase. J Biol Chem 273(30):18734–18742

    CAS  PubMed  Google Scholar 

  12. Berti DA, Morano C et al (2009) Analysis of intracellular substrates and products of thimet oligopeptidase in human embryonic kidney 293 cells. J Biol Chem 284(21):14105–14116

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Binder RJ, Srivastava PK (2005) Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 6(6):593–599

    CAS  PubMed  Google Scholar 

  14. Boldin MP, Varfolomeev EE et al (1995) A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem 270(14):7795–7798

    CAS  PubMed  Google Scholar 

  15. Bustin M, Hopkins RB et al (1978) Immunological relatedness of high mobility group chromosomal proteins from calf thymus. J Biol Chem 253(5):1694–1699

    CAS  PubMed  Google Scholar 

  16. Camargo AC, Gomes MD et al (1997) Structural features that make oligopeptides susceptible substrates for hydrolysis by recombinant thimet oligopeptidase. Biochem J 324(Pt 2):517–522

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Camargo AC, Shapanka R et al (1973) Preparation, assay, and partial characterization of a neutral endopeptidase from rabbit brain. Biochemistry 12(9):1838–1844

    CAS  PubMed  Google Scholar 

  18. Casares N, Pequignot MO et al (2005) Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med 202(12):1691–1701

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Cascio P, Hilton C et al (2001) 26S proteasomes and immunoproteasomes produce mainly N-extended versions of an antigenic peptide. EMBO J 20(10):2357–2366

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Cavassani KA, Ishii M et al (2008) TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J Exp Med 205(11):2609–2621

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Chen G, Ward MF et al (2004) Extracellular HMGB1 as a proinflammatory cytokine. J Interferon Cytokine Res 24(6):329–333

    PubMed  Google Scholar 

  22. Chiba S, Baghdadi M et al (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13(9):832–842

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Cho YS, Challa S et al (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137(6):1112–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5(6):527–549

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Eigenbrod T, Park JH et al (2008) Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol 181(12):8194–8198

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Elliott MR, Chekeni FB et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461(7261):282–286

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Gallucci S, Lolkema M et al (1999) Natural adjuvants: endogenous activators of dendritic cells. Nat Med 5(11):1249–1255

    CAS  PubMed  Google Scholar 

  28. Galluzzi L, Vitale I et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19(1):107–120

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Gamrekelashvili J, Kapanadze T et al (2013) Peptidases released by necrotic cells control CD8+ T cell cross-priming. J Clin Invest 123(11):4755–4768

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Gamrekelashvili J, Kruger C et al (2007) Necrotic tumor cell death in vivo impairs tumor-specific immune responses. J Immunol 178(3):1573–1580

    CAS  PubMed  Google Scholar 

  31. Gamrekelashvili J, Ormandy LA et al (2012) Primary sterile necrotic cells fail to cross-prime CD8(+) T cells. Oncoimmunology 1(7):1017–1026

    PubMed Central  PubMed  Google Scholar 

  32. Gardai SJ, McPhillips KA et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123(2):321–334

    CAS  PubMed  Google Scholar 

  33. Garg AD, Krysko DV et al (2012) A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J 31(5):1062–1079

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Garg AD, Nowis D et al (2010) Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim Biophys Acta 1805(1):53–71

    CAS  PubMed  Google Scholar 

  35. Gebhardt C, Riehl A et al (2008) RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 205(2):275–285

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Gelebart P, Opas M et al (2005) Calreticulin, a Ca2+-binding chaperone of the endoplasmic reticulum. Int J Biochem Cell Biol 37(2):260–266

    CAS  PubMed  Google Scholar 

  37. Ghiringhelli F, Apetoh L et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178

    CAS  PubMed  Google Scholar 

  38. Gold LI, Eggleton P et al (2010) Calreticulin: non-endoplasmic reticulum functions in physiology and disease. FASEB J 24(3):665–683

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Goldberg AL, Cascio P et al (2002) The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 39(3–4):147–164

    CAS  PubMed  Google Scholar 

  40. Goldszmid RS, Idoyaga J et al (2003) Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. J Immunol 171(11):5940–5947

    CAS  PubMed  Google Scholar 

  41. Holler N, Zaru R et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495

    CAS  PubMed  Google Scholar 

  42. Inoue H, Tani K (2014) Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ 21(1):39–49

    CAS  PubMed  Google Scholar 

  43. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5(10):987–995

    CAS  PubMed  Google Scholar 

  44. Iyer SS, Pulskens WP et al (2009) Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci USA 106(48):20388–20393

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Janssen E, Tabeta K et al (2006) Efficient T cell activation via a toll-interleukin 1 receptor-independent pathway. Immunity 24(6):787–799

    CAS  PubMed  Google Scholar 

  46. Joubert PE, Albert ML (2012) Antigen cross-priming of cell-associated proteins is enhanced by Macroautophagy within the antigen donor cell. Front Immunol 3:61

    PubMed Central  PubMed  Google Scholar 

  47. Kaczmarek A, Vandenabeele P et al (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38(2):209–223

    CAS  PubMed  Google Scholar 

  48. Kariko K, Ni H et al (2004) mRNA is an endogenous ligand for toll-like receptor 3. J Biol Chem 279(13):12542–12550

    CAS  PubMed  Google Scholar 

  49. Kazama H, Ricci JE et al (2008) Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29(1):21–32

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kerr JF, Wyllie AH et al (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kessler JH, Khan S et al (2011) Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat Immunol 12(1):45–53

    CAS  PubMed  Google Scholar 

  52. Kisselev AF, Akopian TN et al (1999) The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J Biol Chem 274(6):3363–3371

    CAS  PubMed  Google Scholar 

  53. Kloetzel PM (2004) Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 5(7):661–669

    CAS  PubMed  Google Scholar 

  54. Kroemer G, Galluzzi L et al (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87(1):99–163

    CAS  PubMed  Google Scholar 

  55. Kroemer G, Galluzzi L et al (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72

    CAS  PubMed  Google Scholar 

  56. Kroemer G, Galluzzi L et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16(1):3–11

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Krysko DV, Garg AD et al (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12(12):860–875

    CAS  PubMed  Google Scholar 

  58. Kunisawa J, Shastri N (2006) Hsp90alpha chaperones large C-terminally extended proteolytic intermediates in the MHC class I antigen processing pathway. Immunity 24(5):523–534

    CAS  PubMed  Google Scholar 

  59. Lev A, Takeda K et al (2008) The exception that reinforces the rule: crosspriming by cytosolic peptides that escape degradation. Immunity 28(6):787–798

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Li M, Davey GM et al (2001) Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J Immunol 166(10):6099–6103

    CAS  PubMed  Google Scholar 

  61. Li MO, Sarkisian MR et al (2003) Phosphatidylserine receptor is required for clearance of apoptotic cells. Science 302(5650):1560–1563

    CAS  PubMed  Google Scholar 

  62. Li Y, Wang L-X et al (2009) Cross-presentation of tumor associated antigens through tumor-derived autophagosomes. Autophagy 5(4):576–577

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Li Y, Wang LX et al (2011) Tumor-derived autophagosome vaccine: mechanism of cross-presentation and therapeutic efficacy. Clin Cancer Res 17(22):7047–7057

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3(5):361–370

    CAS  PubMed  Google Scholar 

  65. Liu K, Iyoda T et al (2002) Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med 196(8):1091–1097

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Luthi AU, Cullen SP et al (2009) Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31(1):84–98

    CAS  PubMed  Google Scholar 

  67. Matzinger P (1994) Tolerance, danger, and the extended family. Annu Rev Immunol 12:991–1045

    CAS  PubMed  Google Scholar 

  68. Michaud M, Martins I et al (2011) Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334(6062):1573–1577

    CAS  PubMed  Google Scholar 

  69. Muller S, Ronfani L et al (2004) Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 255(3):332–343

    CAS  PubMed  Google Scholar 

  70. Neufeld TP, Baehrecke EH (2008) Eating on the fly: function and regulation of autophagy during cell growth, survival and death in drosophila. Autophagy 4(5):557–562

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Norbury CC, Basta S et al (2004) CD8+ T cell cross-priming via transfer of proteasome substrates. Science 304(5675):1318–1321

    CAS  PubMed  Google Scholar 

  72. Obeid M, Tesniere A et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61

    CAS  PubMed  Google Scholar 

  73. Oerlemans MI, Liu J et al (2012) Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol 107(4):270

    PubMed  Google Scholar 

  74. Panaretakis T, Kepp O et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28(5):578–590

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Paz P, Brouwenstijn N et al (1999) Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER. Immunity 11(2):241–251

    CAS  PubMed  Google Scholar 

  76. Pellegatti P, Raffaghello L et al (2008) Increased level of extracellular ATP at tumor sites: in vivo imaging with plasma membrane luciferase. PLoS One 3(7):e2599

    PubMed Central  PubMed  Google Scholar 

  77. Princiotta MF, Finzi D et al (2003) Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18(3):343–354

    CAS  PubMed  Google Scholar 

  78. Rapaport E, Fontaine J (1989) Anticancer activities of adenine nucleotides in mice are mediated through expansion of erythrocyte ATP pools. Proc Natl Acad Sci USA 86(5):1662–1666

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Reits E, Griekspoor A et al (2003) Peptide diffusion, protection, and degradation in nuclear and cytoplasmic compartments before antigen presentation by MHC class I. Immunity 18(1):97–108

    CAS  PubMed  Google Scholar 

  80. Rock KL, York IA et al (2004) Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5(7):670–677

    CAS  PubMed  Google Scholar 

  81. Rovere-Querini P, Capobianco A et al (2004) HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5(8):825–830

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Samuels MA (2007) The brain-heart connection. Circulation 116(1):77–84

    PubMed  Google Scholar 

  83. Sancho D, Joffre OP et al (2009) Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458(7240):899–903

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Saric T, Beninga J et al (2001) Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J Biol Chem 276(39):36474–36481

    CAS  PubMed  Google Scholar 

  85. Saric T, Graef CI et al (2004) Pathway for degradation of peptides generated by proteasomes: a key role for thimet oligopeptidase and other metallopeptidases. J Biol Chem 279(45):46723–46732

    CAS  PubMed  Google Scholar 

  86. Saveanu L, Carroll O et al (2005) Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat Immunol 6(7):689–697

    CAS  PubMed  Google Scholar 

  87. Savill J, Dransfield I et al (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2(12):965–975

    CAS  PubMed  Google Scholar 

  88. Scaffidi P, Misteli T et al (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418(6894):191–195

    CAS  PubMed  Google Scholar 

  89. Scheffer SR, Nave H et al (2003) Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 103(2):205–211

    CAS  PubMed  Google Scholar 

  90. Seong SY, Matzinger P (2004) Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol 4(6):469–478

    CAS  PubMed  Google Scholar 

  91. Serwold T, Gaw S et al (2001) ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat Immunol 2(7):644–651

    CAS  PubMed  Google Scholar 

  92. Shen L, Rock KL (2004) Cellular protein is the source of cross-priming antigen in vivo. Proc Natl Acad Sci USA 101(9):3035–3040

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Shi Y, Evans JE et al (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521

    CAS  PubMed  Google Scholar 

  94. Sigman JA, Patwa TH et al (2005) Flexibility in substrate recognition by thimet oligopeptidase as revealed by denaturation studies. Biochem J 388(Pt 1):255–261

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Silva CL, Portaro FC et al (1999) Thimet oligopeptidase (EC 3.4.24.15), a novel protein on the route of MHC class I antigen presentation. Biochem Biophys Res Commun 255(3):591–595

    CAS  PubMed  Google Scholar 

  96. Somersan S, Larsson M et al (2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol 167(9):4844–4852

    CAS  PubMed  Google Scholar 

  97. Sparvero LJ, Asafu-Adjei D et al (2009) RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7:17

    PubMed Central  PubMed  Google Scholar 

  98. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194

    CAS  PubMed  Google Scholar 

  99. Stoltze L, Schirle M et al (2000) Two new proteases in the MHC class I processing pathway. Nat Immunol 1(5):413–418

    CAS  PubMed  Google Scholar 

  100. Thorburn J, Horita H et al (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16(1):175–183

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Uhl M, Kepp O et al (2009) Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8 + T cells. Cell Death Differ 16(7):991–1005

    CAS  PubMed  Google Scholar 

  102. Vanden Berghe T, Kalai M et al (2006) Necrosis is associated with IL-6 production but apoptosis is not. Cell Signal 18(3):328–335

    CAS  PubMed  Google Scholar 

  103. Vanden Berghe T, Linkermann A et al (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15(2):135–147

    CAS  PubMed  Google Scholar 

  104. Venereau E, Casalgrandi M et al (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209(9):1519–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Wang H, Bloom O et al (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285(5425):248–251

    CAS  PubMed  Google Scholar 

  106. Weber CK, Adler G (2003) Acute pancreatitis. Curr Opin Gastroenterol 19(5):447–450

    CAS  PubMed  Google Scholar 

  107. Wolfers J, Lozier A et al (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7(3):297–303

    CAS  PubMed  Google Scholar 

  108. Woo M, Hakem R et al (2000) Executionary pathway for apoptosis: lessons from mutant mice. Cell Res 10(4):267–278

    CAS  PubMed  Google Scholar 

  109. Yang H, Lundback P et al (2012) Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med 18:250–259

    PubMed Central  PubMed  Google Scholar 

  110. Yewdell JW (2011) DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 32(11):548–558

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Yewdell JW, Anton LC et al (1996) Defective ribosomal products (DRiPs): a major source of antigenic peptides for MHC class I molecules? J Immunol 157(5):1823–1826

    CAS  PubMed  Google Scholar 

  112. Yoon TJ, Kim JY et al (2008) Anti-tumor immunostimulatory effect of heat-killed tumor cells. Exp Mol Med 40(1):130–144

    CAS  PubMed Central  PubMed  Google Scholar 

  113. York IA, Bhutani N et al (2006) Tripeptidyl peptidase II is the major peptidase needed to trim long antigenic precursors, but is not required for most MHC class I antigen presentation. J Immunol 177(3):1434–1443

    CAS  PubMed  Google Scholar 

  114. York IA, Chang SC et al (2002) The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat Immunol 3(12):1177–1184

    CAS  PubMed  Google Scholar 

  115. York IA, Mo AX et al (2003) The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 18(3):429–440

    CAS  PubMed  Google Scholar 

  116. Zhang Q, Raoof M et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464(7285):104–107

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the NCI, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim F. Greten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamrekelashvili, J., Greten, T.F. & Korangy, F. Immunogenicity of necrotic cell death. Cell. Mol. Life Sci. 72, 273–283 (2015). https://doi.org/10.1007/s00018-014-1741-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1741-x

Keywords

Navigation