Skip to main content

Advertisement

Log in

Selective class IIa HDAC inhibitors: myth or reality

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The prospect of intervening, through the use of a specific molecule, with a cellular alteration responsible for a disease, is a fundamental ambition of biomedical science. Epigenetic-based therapies appear as a remarkable opportunity to impact on several disorders, including cancer. Many efforts have been made to develop small molecules acting as inhibitors of histone deacetylases (HDACs). These enzymes are key targets to reset altered genetic programs and thus to restore normal cellular activities, including drug responsiveness. Several classes of HDAC inhibitors (HDACis) have been generated, characterized and, in certain cases, approved for the use in clinic. A new frontier is the generation of subtype-specific inhibitors, to increase selectivity and to manage general toxicity. Here we will discuss about a set of molecules, which can interfere with the activity of a specific subclass of HDACs: the class IIa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gräff J, Tsai L-H (2013) Histone acetylation: molecular mnemonics on the chromatin. Nat Rev Neurosci 14:97–111. doi:10.1038/nrn3427

    PubMed  Google Scholar 

  2. Helin K, Dhanak D (2013) Chromatin proteins and modifications as drug targets. Nature 502:480–488. doi:10.1038/nature12751

    CAS  PubMed  Google Scholar 

  3. Hatziapostolou M, Iliopoulos D (2011) Epigenetic aberrations during oncogenesis. Cell Mol Life Sci 68:1681–1702. doi:10.1007/s00018-010-0624-z

    CAS  PubMed  Google Scholar 

  4. Dawson MA, Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. Cell 150:12–27. doi:10.1016/j.cell.2012.06.013

    CAS  PubMed  Google Scholar 

  5. Wang Z, Zang C, Cui K et al (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138:1019–1031. doi:10.1016/j.cell.2009.06.049

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Mihaylova MM, Vasquez DS, Ravnskjaer K et al (2011) Class IIa histone deacetylases are hormone-activated regulators of FOXO and mammalian glucose homeostasis. Cell 145:607–621. doi:10.1016/j.cell.2011.03.043

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Yang X-J, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol 9:206–218. doi:10.1038/nrm2346

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Delcuve G, Khan D, Davie J (2012) Roles of histone deacetylases in epigenetic regulation: emerging paradigms from studies with inhibitors. Clin Epigenenetics 4:5. doi:10.1186/1868-7083-4-5

    CAS  Google Scholar 

  9. Di Micco R, Sulli G, Dobreva M et al (2011) Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 13:292–302. doi:10.1038/ncb2170

    PubMed Central  PubMed  Google Scholar 

  10. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784. doi:10.1038/nrd2133

    CAS  PubMed  Google Scholar 

  11. Henderson C, Brancolini C (2003) Apoptotic pathways activated by histone deacetylase inhibitors: implications for the drug-resistant phenotype. Drug Resist Updat 6:247–256. doi:10.1016/S1368-7646(03)00067-0

    CAS  PubMed  Google Scholar 

  12. Clocchiatti A, Florean C, Brancolini C (2011) Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis. J Cell Mol Med 15:1833–1846. doi:10.1111/j.1582-4934.2011.01321.x

    CAS  PubMed  Google Scholar 

  13. Aygün O, Mehta S, Grewal SIS (2013) HDAC-mediated suppression of histone turnover promotes epigenetic stability of heterochromatin. Nat Struct Mol Biol 20:547–554. doi:10.1038/nsmb.2565

    PubMed Central  PubMed  Google Scholar 

  14. Prince HM, Bishton MJ, Harrison SJ (2009) Clinical studies of histone deacetylase inhibitors. Clin Cancer Res 15:3958–3969. doi:10.1158/1078-0432.CCR-08-2785

    CAS  PubMed  Google Scholar 

  15. Balasubramanian S, Verner E, Buggy JJ (2009) Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett 280:211–221. doi:10.1016/j.canlet.2009.02.013

    CAS  PubMed  Google Scholar 

  16. Bertrand P (2010) Inside HDAC with HDAC inhibitors. Eur J Med Chem 45:2095–2116. doi:10.1016/j.ejmech.2010.02.030

    CAS  PubMed  Google Scholar 

  17. Giannini G, Cabri W, Fattorusso C, Rodriquez M (2012) Histone deacetylase inhibitors in the treatment of cancer: overview and perspectives. Future Med Chem 4:1439–1460. doi:10.4155/fmc.12.80

    CAS  PubMed  Google Scholar 

  18. Thaler F, Mercurio C (2014) Towards selective inhibition of histone deacetylase isoforms: what has been achieved, where we are and what will be next. Chem Med Chem 9:523–536. doi:10.1002/cmdc.201300413

    CAS  PubMed  Google Scholar 

  19. Dekker FJ, van den Bosch T, Martin NI (2014) Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today 19:654–660. doi:10.1016/j.drudis.2013.11.012

    CAS  PubMed  Google Scholar 

  20. Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989. doi:10.1158/1541-7786.MCR-07-0324

    CAS  PubMed  Google Scholar 

  21. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124:30–39. doi:10.1172/JCI69738

    CAS  PubMed  Google Scholar 

  22. Zhang J, Zhong Q (2014) Histone deacetylase inhibitors and cell death. Cell Mol Life Sci. doi:10.1007/s00018-014-1656-6

    Google Scholar 

  23. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:32–42. doi:10.1038/nrg2485

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Fischle W, Dequiedt F, Hendzel MJ et al (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9:45–57. doi:10.1016/S1097-2765(01)00429-4

    CAS  PubMed  Google Scholar 

  25. Lahm A, Paolini C, Pallaoro M et al (2007) Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci USA 104:17335–17340. doi:10.1073/pnas.0706487104

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Lobera M, Madauss KP, Pohlhaus DT et al (2013) Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat Chem Biol 9:319–325. doi:10.1038/nchembio.1223

    CAS  PubMed  Google Scholar 

  27. Martin M, Kettmann R, Dequiedt F (2007) Class IIa histone deacetylases: regulating the regulators. Oncogene 26:5450–5467. doi:10.1038/sj.onc.1210613

    CAS  PubMed  Google Scholar 

  28. Wang Z, Qin G, Zhao TC (2014) HDAC4: mechanism of regulation and biological functions. Epigenomics 6:139–150. doi:10.2217/epi.13.73

    CAS  PubMed  Google Scholar 

  29. Schuetz A, Min J, Allali-Hassani A et al (2008) Human HDAC7 harbors a class IIa histone deacetylase-specific zinc binding motif and cryptic deacetylase activity. J Biol Chem 283:11355–11363. doi:10.1074/jbc.M707362200

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Vannini A, Volpari C, Filocamo G et al (2004) Crystal structure of a eukaryotic zinc-dependent histone deacetylase, human HDAC8, complexed with a hydroxamic acid inhibitor. Proc Natl Acad Sci USA 101:15064–15069. doi:10.1073/pnas.0404603101

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Bottomley MJ, Lo Surdo P, Di Giovine P et al (2008) Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem 283:26694–26704. doi:10.1074/jbc.M803514200

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhou X, Marks PA, Rifkind RA, Richon VM (2001) Cloning and characterization of a histone deacetylase, HDAC9. Proc Natl Acad Sci USA 98:10572–10577. doi:10.1073/pnas.191375098

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338:17–31. doi:10.1016/j.jmb.2004.02.006

    CAS  PubMed  Google Scholar 

  34. Huang EY, Zhang J, Miska EA et al (2000) Nuclear receptor corepressors partner with class II histone deacetylases in a Sin3-independent repression pathway. Genes Dev 14:45–54. doi:10.1101/gad.14.1.45

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Guenther MG, Barak O, Lazar MA (2001) The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21:6091–6101. doi:10.1128/MCB.21.18.6091-6101.2001

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Fischle W, Dequiedt F, Fillion M et al (2001) Human HDAC7 histone deacetylase activity is associated with HDAC3 in vivo. J Biol Chem 276:35826–35835. doi:10.1074/jbc.M104935200

    CAS  PubMed  Google Scholar 

  37. Clocchiatti A, Di Giorgio E, Ingrao S et al (2013) Class IIa HDACs repressive activities on MEF2-depedent transcription are associated with poor prognosis of ER+ breast tumors. FASEB J 27:942–954. doi:10.1096/fj.12-209346

    CAS  PubMed  Google Scholar 

  38. Di Giorgio E, Clocchiatti A, Piccinin S et al (2013) MEF2 is a converging hub for HDAC4 and PI3K/Akt-induced transformation. Mol Cell Biol 33:4473–4491. doi:10.1128/MCB.01050-13

    PubMed Central  PubMed  Google Scholar 

  39. Zhang C, McKinsey T, Olson E (2002) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22:7302–7312. doi:10.1128/MCB.22.20.7302

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Finnin MS, Donigian JR, Cohen A et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193. doi:10.1038/43710

    CAS  PubMed  Google Scholar 

  41. Yang W-M, Tsai S-C, Wen Y-D et al (2002) Functional domains of histone deacetylase-3. J Biol Chem 277:9447–9454. doi:10.1074/jbc.M105993200

    CAS  PubMed  Google Scholar 

  42. Ago T, Liu T, Zhai P et al (2008) A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy. Cell 133:978–993. doi:10.1016/j.cell.2008.04.041

    CAS  PubMed  Google Scholar 

  43. Isaacs JT, Antony L, Dalrymple SL et al (2013) Tasquinimod is an allosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res 73:1386–1399. doi:10.1158/0008-5472.CAN-12-2730

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Clocchiatti A, Di Giorgio E, Demarchi F, Brancolini C (2013) Beside the MEF2 axis: unconventional functions of HDAC4. Cell Signal 25:269–276. doi:10.1016/j.cellsig.2012.10.002

    CAS  PubMed  Google Scholar 

  45. Cohen TJ, Barrientos T, Hartman ZC et al (2009) The deacetylase HDAC4 controls myocyte enhancing factor-2-dependent structural gene expression in response to neural activity. FASEB J 23:99–106. doi:10.1096/fj.08-115931

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Moresi V, Williams AH, Meadows E et al (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143:35–45. doi:10.1016/j.cell.2010.09.004

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Choi MC, Cohen TJ, Barrientos T et al (2012) A direct HDAC4-MAP kinase crosstalk activates muscle atrophy program. Mol Cell 47:122–132. doi:10.1016/j.molcel.2012.04.025

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Liu L, Cavanaugh JE, Wang Y et al (2003) ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc Natl Acad Sci USA 100:8532–8537. doi:10.1073/pnas.1332804100

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Grégoire S, Tremblay AM, Xiao L et al (2006) Control of MEF2 transcriptional activity by coordinated phosphorylation and sumoylation. J Biol Chem 281:4423–4433. doi:10.1074/jbc.M509471200

    PubMed  Google Scholar 

  50. Grégoire S, Xiao L, Nie J et al (2007) Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 27:1280–1295. doi:10.1128/MCB.00882-06

    PubMed Central  PubMed  Google Scholar 

  51. Burgess A, Ruefli A, Beamish H et al (2004) Histone deacetylase inhibitors specifically kill nonproliferating tumour cells. Oncogene 23:6693–6701. doi:10.1038/sj.onc.1207893

    CAS  PubMed  Google Scholar 

  52. Bolden JE, Shi W, Jankowski K et al (2013) HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis 4:e519. doi:10.1038/cddis.2013.9

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Vrana JA, Decker RH, Johnson CR et al (1999) Induction of apoptosis in U937 human leukemia cells by suberoylanilide hydroxamic acid (SAHA) proceeds through pathways that are regulated by Bcl-2/Bcl-XL, c-Jun, and p21CIP1, but independent of p53. Oncogene 18:7016–7025. doi:10.1038/sj.onc.1203176

    CAS  PubMed  Google Scholar 

  54. Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97:10014–10019. doi:10.1073/pnas.180316197

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Gammoh N, Lam D, Puente C et al (2012) Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci 109:6561–6565. doi:10.1073/pnas.1204429109

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Henderson C, Mizzau M, Paroni G et al (2003) Role of caspases, Bid, and p53 in the apoptotic response triggered by histone deacetylase inhibitors trichostatin-A (TSA) and suberoylanilide hydroxamic acid (SAHA). J Biol Chem 278:12579–12589. doi:10.1074/jbc.M213093200

    CAS  PubMed  Google Scholar 

  57. Maeda T, Towatari M, Kosugi H, Saito H (2000) Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 96:3847–3856

    CAS  PubMed  Google Scholar 

  58. Magner WJ, Kazim AL, Stewart C et al (2000) Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 165:7017–7024

    CAS  PubMed  Google Scholar 

  59. Rossig L, Li H, Fisslthaler B et al (2002) Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res 91:837–844. doi:10.1161/01.RES.0000037983.07158.B1

    PubMed  Google Scholar 

  60. Deroanne CF, Bonjean K, Servotte S et al (2002) Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 21:427–436. doi:10.1038/sj.onc.1205108

    CAS  PubMed  Google Scholar 

  61. Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468. doi:10.1200/JCO.2009.22.1291

    CAS  PubMed  Google Scholar 

  62. Wilson AJ, Byun D-S, Nasser S et al (2008) HDAC4 promotes growth of colon cancer cells via repression of p21. Mol Biol Cell 19:4062–4075. doi:10.1091/mbc.E08-02-0139

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Mottet D, Pirotte S, Lamour V et al (2009) HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene 28:243–256. doi:10.1038/onc.2008.371

    CAS  PubMed  Google Scholar 

  64. Rad R, Rad L, Wang W et al (2010) PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330:1104–1107. doi:10.1126/science.1193004

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Hohl M, Wagner M, Reil J et al (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123:1359–1370. doi:10.1172/JCI61084

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Jones P, Altamura S, De Francesco R et al (2008) Probing the elusive catalytic activity of vertebrate class IIa histone deacetylases. Bioorg Med Chem Lett 18:1814–1819. doi:10.1016/j.bmcl.2008.02.025

    CAS  PubMed  Google Scholar 

  67. Jones P, Bottomley MJ, Carfí A et al (2008) 2-Trifluoroacetylthiophenes, a novel series of potent and selective class II histone deacetylase inhibitors. Bioorg Med Chem Lett 18:3456–3461. doi:10.1016/j.bmcl.2008.02.026

    CAS  PubMed  Google Scholar 

  68. Bradner JE, West N, Grachan ML et al (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6:238–243. doi:10.1038/nchembio.313

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Sternson SM, Wong JC, Grozinger CM, Schreiber SL (2001) Synthesis of 7200 small molecules based on a substructural analysis of the histone deacetylase inhibitors trichostatin and trapoxin. Org Lett 3:4239–4242. doi:10.1021/ol016915f

    CAS  PubMed  Google Scholar 

  70. Henkes LM, Haus P, Jäger F et al (2012) Synthesis and biochemical analysis of 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoro-N-hydroxy-octanediamides as inhibitors of human histone deacetylases. Bioorg Med Chem 20:985–995. doi:10.1016/j.bmc.2011.11.041

    CAS  PubMed  Google Scholar 

  71. Marek L, Hamacher A, Hansen FK et al (2013) Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Med Chem 56:427–436. doi:10.1021/jm301254q

    CAS  PubMed  Google Scholar 

  72. Fleming CL, Ashton TD, Gaur V et al (2014) Improved synthesis and structural reassignment of MC1568: a class IIa selective HDAC inhibitor. J Med Chem 57:1132–1135. doi:10.1021/jm401945k

    CAS  PubMed  Google Scholar 

  73. Mai A, Massa S, Pezzi R et al (2005) Class II (IIa)-selective histone deacetylase inhibitors. 1. Synthesis and biological evaluation of novel (aryloxopropenyl)pyrrolyl hydroxyamides. J Med Chem 48:3344–3353. doi:10.1021/jm049002a

    CAS  PubMed  Google Scholar 

  74. Duong V, Bret C, Altucci L et al (2008) Specific activity of class II histone deacetylases in human breast cancer cells. Mol Cancer Res 6:1908–1919. doi:10.1158/1541-7786.MCR-08-0299

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Nebbioso A, Dell’Aversana C, Bugge A et al (2010) HDACs class II-selective inhibition alters nuclear receptor-dependent differentiation. J Mol Endocrinol 45:219–228. doi:10.1677/JME-10-0043

    CAS  PubMed  Google Scholar 

  76. Venza I, Visalli M, Oteri R et al (2013) Class II-specific histone deacetylase inhibitors MC1568 and MC1575 suppress IL-8 expression in human melanoma cells. Pigment Cell Melanoma Res 26:193–204. doi:10.1111/pcmr.12049

    CAS  PubMed  Google Scholar 

  77. Kahali B, Gramling SJ, Marquez SB et al (2014) Identifying targets for the restoration and reactivation of BRM. Oncogene 33:653–664. doi:10.1038/onc.2012.613

    CAS  PubMed  Google Scholar 

  78. Nebbioso A, Manzo F, Miceli M et al (2009) Selective class II HDAC inhibitors impair myogenesis by modulating the stability and activity of HDAC-MEF2 complexes. EMBO Rep 10:776–782. doi:10.1038/embor.2009.88

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ontoria JM, Altamura S, Di Marco A, Ferrigno F, Laufer R, Muraglia E, Palumbi MC, Rowley M, Scarpelli R, Schultz-Fademrecht C, Serafini S, Steinkühler CJP (2009) Identification of novel, selective, and stable inhibitors of class II histone deacetylases. Validation studies of the inhibition of the enzymatic activity of HDAC4 by small molecules as a novel approach for cancer therapy. J Med Chem 52:6782–6789. doi:10.1021/jm900555u

    CAS  PubMed  Google Scholar 

  80. Tessier P, Smil DV, Wahhab A et al (2009) Diphenylmethylene hydroxamic acids as selective class IIa histone deacetylase inhibitors. Bioorg Med Chem Lett 19:5684–5688. doi:10.1016/j.bmcl.2009.08.010

    CAS  PubMed  Google Scholar 

  81. Haus P, Korbus M, Schröder M, Meyer-Almes F-J (2011) Identification of selective class II histone deacetylase inhibitors using a novel dual-parameter binding assay based on fluorescence anisotropy and lifetime. J Biomol Screen 16:1206–1216. doi:10.1177/1087057111424605

    CAS  PubMed  Google Scholar 

  82. Olsson A, Björk A, Vallon-Christersson J et al (2010) Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors. Mol Cancer 9:107. doi:10.1186/1476-4598-9-107

    PubMed Central  PubMed  Google Scholar 

  83. Dalrymple SL, Becker RE, Zhou H et al (2012) Tasquinimod prevents the angiogenic rebound induced by fractionated radiation resulting in an enhanced therapeutic response of prostate cancer xenografts. Prostate 72:638–648. doi:10.1002/pros.21467

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Corzo CA, Condamine T, Lu L et al (2010) HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. J Exp Med 207:2439–2453. doi:10.1084/jem.20100587

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Kong Y, Jung M, Wang K et al (2011) Histone deacetylase cytoplasmic trapping by a novel fluorescent HDAC inhibitor. Mol Cancer Ther 10:1591–1599. doi:10.1158/1535-7163.MCT-10-0779

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Zhang Y, Li N, Caron C et al (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22:1168–1179. doi:10.1093/emboj/cdg115

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Geng L, Cuneo KC, Fu A et al (2006) Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Res 66:11298–11304. doi:10.1158/0008-5472.CAN-06-0049

    CAS  PubMed  Google Scholar 

  88. Guo L, Han A, Bates DL et al (2007) Crystal structure of a conserved N-terminal domain of histone deacetylase 4 reveals functional insights into glutamine-rich domains. Proc Natl Acad Sci USA 104:4297–4302. doi:10.1073/pnas.0608041104

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Miska EA, Karlsson C, Langley E et al (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18:5099–5107. doi:10.1093/emboj/18.18.5099

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Vega RB, Matsuda K, Oh J et al (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566. doi:10.1016/j.cell.2004.10.024

    CAS  PubMed  Google Scholar 

  91. Chang S, McKinsey TA, Zhang CL et al (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24:8467–8476. doi:10.1128/MCB.24.19.8467-8476.2004

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Chang S, Young BD, Li S et al (2006) Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10. Cell 126:321–334. doi:10.1016/j.cell.2006.05.040

    CAS  PubMed  Google Scholar 

  93. Kehat I, Accornero F, Aronow BJ, Molkentin JD (2011) Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J Cell Biol 193:21–29. doi:10.1083/jcb.201101046

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Barrett A, Santangelo S, Tan K et al (2007) Breast cancer associated transcriptional repressor PLU-1/JARID1B interacts directly with histone deacetylases. Int J Cancer 121:265–275. doi:10.1002/ijc.22673

    CAS  PubMed  Google Scholar 

  95. Jayathilaka N, Han A, Gaffney KJ et al (2012) Inhibition of the function of class IIa HDACs by blocking their interaction with MEF2. Nucleic Acids Res 40:5378–5388. doi:10.1093/nar/gks189

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Han A, He J, Wu Y et al (2005) Mechanism of recruitment of class II histone deacetylases by myocyte enhancer factor-2. J Mol Biol 345:91–102. doi:10.1016/j.jmb.2004.10.033

    CAS  PubMed  Google Scholar 

  97. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51. doi:10.1038/nrc1779

    CAS  PubMed  Google Scholar 

  98. Shi Y, Lan F, Matson C et al (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953. doi:10.1016/j.cell.2004.12.012

    CAS  PubMed  Google Scholar 

  99. Metzger E, Wissmann M, Yin N et al (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439. doi:10.1038/nature04020

    CAS  PubMed  Google Scholar 

  100. Hoffmann I, Roatsch M, Schmitt ML et al (2012) The role of histone demethylases in cancer therapy. Mol Oncol 6:683–703. doi:10.1016/j.molonc.2012.07.004

    CAS  PubMed  Google Scholar 

  101. Zhuang Q, Qing X, Ying Y et al (2013) Class IIa histone deacetylases and myocyte enhancer factor 2 proteins regulate the mesenchymal-to-epithelial transition of somatic cell reprogramming. J Biol Chem 288:12022–12031. doi:10.1074/jbc.M113.460766

    CAS  PubMed Central  PubMed  Google Scholar 

  102. McGee SL, van Denderen BJW, Howlett KF et al (2008) AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57:860–867. doi:10.2337/db07-0843

    CAS  PubMed  Google Scholar 

  103. Sparling DP, Griesel BA, Weems J, Olson AL (2008) GLUT4 enhancer factor (GEF) interacts with MEF2A and HDAC5 to regulate the GLUT4 promoter in adipocytes. J Biol Chem 283:7429–7437. doi:10.1074/jbc.M800481200

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Weems J, Olson AL (2011) Class II histone deacetylases limit GLUT4 gene expression during adipocyte differentiation. J Biol Chem 286:460–468. doi:10.1074/jbc.M110.157107

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Raichur S, Hooi Teh S, Ohwaki K et al (2012) Histone deacetylase 5 regulates glucose uptake and insulin action in muscle cells. J Mol Endocrinol 49:203–211. doi:10.1530/JME-12-0095

    CAS  PubMed  Google Scholar 

  106. Kumar A, Lin Z, SenBanerjee S, Jain MK (2005) Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases. Mol Cell Biol 25:5893–5903. doi:10.1128/MCB.25.14.5893-5903.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Baek Y-S, Haas S, Hackstein H et al (2009) Identification of novel transcriptional regulators involved in macrophage differentiation and activation in U937 cells. BMC Immunol 10:18. doi:10.1186/1471-2172-10-18

    PubMed Central  PubMed  Google Scholar 

  108. Bolger TA, Zhao X, Cohen TJ et al (2007) The neurodegenerative disease protein ataxin-1 antagonizes the neuronal survival function of myocyte enhancer factor-2. J Biol Chem 282:29186–29192. doi:10.1074/jbc.M704182200

    CAS  PubMed  Google Scholar 

  109. Morrison BE, Majdzadeh N, D’Mello SR (2007) Histone deacetylases: focus on the nervous system. Cell Mol Life Sci 64:2258–2269. doi:10.1007/s00018-007-7035-9

    CAS  PubMed  Google Scholar 

  110. West AE (2012) Regulated shuttling of the histone deacetylase HDAC5 to the nucleus may put a brake on cocaine addiction. Neuron 73:1–3. doi:10.1016/j.neuron.2011.12.016

    CAS  PubMed  Google Scholar 

  111. Li J, Chen J, Ricupero CL et al (2012) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18:783–790. doi:10.1038/nm.2709

    PubMed Central  PubMed  Google Scholar 

  112. Hara N, Alkanani AK, Dinarello CA, Zipris D (2014) Histone deacetylase inhibitor suppresses virus-induced proinflammatory responses and type 1 diabetes. J Mol Med 92:93–102. doi:10.1007/s00109-013-1078-1

    CAS  PubMed  Google Scholar 

  113. Herman D, Jenssen K, Burnett R et al (2006) Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat Chem Biol 2:551–558. doi:10.1038/nchembio815

    CAS  PubMed  Google Scholar 

  114. Burli RW, Luckhurst CA, Aziz O et al (2013) Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington’s disease. J Med Chem 56:9934–9954. doi:10.1021/jm4011884

    CAS  PubMed  Google Scholar 

  115. Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299–1307. doi:10.1038/nm1652

    CAS  PubMed  Google Scholar 

  116. Wang L, de Zoeten EF, Greene MI, Hancock WW (2009) Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat Rev Drug Discov 8:969–981. doi:10.1038/nrd3031

    CAS  PubMed Central  PubMed  Google Scholar 

  117. de Zoeten EF, Wang L, Sai H et al (2010) Inhibition of HDAC9 increases T regulatory cell function and prevents colitis in mice. Gastroenterology 138:583–594. doi:10.1053/j.gastro.2009.10.037

    PubMed Central  PubMed  Google Scholar 

  118. Bantscheff M, Hopf C, Savitski MM et al (2011) Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29:255–265. doi:10.1038/nbt.175

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research activities were supported by FIRB (Progetto RBAP11S8C3_002), PRIN (Progetto 2010W4J4RM_002) and AIRC to CB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Brancolini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Giorgio, E., Gagliostro, E. & Brancolini, C. Selective class IIa HDAC inhibitors: myth or reality. Cell. Mol. Life Sci. 72, 73–86 (2015). https://doi.org/10.1007/s00018-014-1727-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1727-8

Keywords

Navigation