Skip to main content

Advertisement

Log in

Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Formation of metastasis is the most important and lethal step in cancer progression. Circulating and disseminated cancer cells (CTCs/DTCs) in blood and bone marrow are considered as potential metastases-inducing cells. Their detection and characterization has, therefore, become a field of major interest in translational and clinical research in oncology. The main strategy to detect these cells relies thus far on the epithelial characteristics of carcinoma cells and epithelial cell adhesion molecule (EpCAM) represents the most commonly used epithelial marker to capture CTCs/DTCs. Recent data, however, demonstrated a dynamic expression of EpCAM associated with a loss during epithelial-to-mesenchymal transition. The present review summarizes the potential mechanisms and reasons for a dynamic expression of EpCAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312. doi:10.1038/nrc2627

    Article  PubMed  CAS  Google Scholar 

  2. Klein CA, Stoecklein NH (2009) Lessons from an aggressive cancer: evolutionary dynamics in esophageal carcinoma. Cancer Res 69(13):5285–5288. doi:10.1158/0008-5472.CAN-08-4586

    Article  PubMed  CAS  Google Scholar 

  3. Stoecklein NH, Klein CA (2010) Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 126(3):589–598. doi:10.1002/ijc.24916

    Article  PubMed  CAS  Google Scholar 

  4. Coumans FA, Siesling S, Terstappen LW (2013) Detection of cancer before distant metastasis. BMC Cancer 13(1):283. doi:10.1186/1471-2407-13-283

    Article  PubMed  PubMed Central  Google Scholar 

  5. Aprile G, Giuliani F, Cordio S, Sartore-Bianchi A, Bencardino K, Ongaro E, Martines C, Giampieri R, Bordonaro R, Siena S, Cascinu S, Scartozzi M (2014) Translational challenges from the 2014 Gastrointestinal Cancers Symposium: toward a true tailored therapy through effective research. Future Oncol 10(7):1125–1128. doi:10.2217/fon.14.54

    Article  PubMed  CAS  Google Scholar 

  6. Lehmann BD, Pietenpol JA (2014) Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol 232(2):142–150. doi:10.1002/path.4280

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS (2014) Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 20(10):2553–2568. doi:10.1158/1078-0432.CCR-13-2664

    Article  PubMed  CAS  Google Scholar 

  8. Pantel K, Alix-Panabieres C (2010) Circulating tumour cells in cancer patients: challenges and perspectives. Trends Mol Med 16(9):398–406. doi:10.1016/j.molmed.2010.07.001

    Article  PubMed  Google Scholar 

  9. Pantel K, Alix-Panabieres C, Riethdorf S (2009) Cancer micrometastases. Nat Rev Clin Oncol 6(6):339–351. doi:10.1038/nrclinonc.2009.44

    Article  PubMed  CAS  Google Scholar 

  10. Becker TM, Caixeiro NJ, Lim SH, Tognela A, Kienzle N, Scott KF, Spring KJ, de Souza P (2014) New frontiers in circulating tumor cell analysis: a reference guide for biomolecular profiling toward translational clinical use. Int J Cancer 134(11):2523–2533. doi:10.1002/ijc.28516

    Article  PubMed  CAS  Google Scholar 

  11. Fischer JC, Niederacher D, Topp SA, Honisch E, Schumacher S, Schmitz N, Zacarias Fohrding L, Vay C, Hoffmann I, Kasprowicz NS, Hepp PG, Mohrmann S, Nitz U, Stresemann A, Krahn T, Henze T, Griebsch E, Raba K, Rox JM, Wenzel F, Sproll C, Janni W, Fehm T, Klein CA, Knoefel WT, Stoecklein NH (2013) Diagnostic leukapheresis enables reliable detection of circulating tumor cells of nonmetastatic cancer patients. Proc Natl Acad Sci USA 110(41):16580–16585. doi:10.1073/pnas.1313594110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Coumans FA, Ligthart ST, Uhr JW, Terstappen LW (2012) Challenges in the enumeration and phenotyping of CTC. Clin Cancer Res 18(20):5711–5718. doi:10.1158/1078-0432.CCR-12-1585

    Article  PubMed  Google Scholar 

  13. Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D, Nowaczyk P, Tomasi T, Weber E, Dworacki G, Morgenthaler NG, Jansen H, Propping C, Sterzynska K, Dyszkiewicz W, Zabel M, Kiechle M, Reuning U, Schmitt M, Lucke K (2012) A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol 41(4):1241–1250. doi:10.3892/ijo.2012.1557

    PubMed  PubMed Central  Google Scholar 

  14. Schlimok G, Gottlinger H, Funke I, Swierkot S, Hauser H, Riethmuller G (1986) In vivo and in vitro labelling of epithelial tumor cells with anti 17-1A monoclonal antibodies in bone marrow of cancer patients. Hybridoma 5(Suppl 1):S163–S170

    PubMed  Google Scholar 

  15. Barradas AM, Terstappen LW (2013) Towards the biological understanding of CTC: capture technologies, definitions and potential to create metastasis. Cancers 5(4):1619–1642. doi:10.3390/cancers5041619

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu L, Liao GQ, He P, Zhu H, Liu PH, Qu YM, Song XM, Xu QW, Gao Q, Zhang Y, Chen WF, Yin YH (2008) Detection of circulating cancer cells in lung cancer patients with a panel of marker genes. Biochem Biophys Res Commun 372(4):756–760. doi:10.1016/j.bbrc.2008.05.101

    Article  PubMed  CAS  Google Scholar 

  17. Went PT, Lugli A, Meier S, Bundi M, Mirlacher M, Sauter G, Dirnhofer S (2004) Frequent EpCam protein expression in human carcinomas. Hum Pathol 35(1):122–128

    Article  PubMed  CAS  Google Scholar 

  18. Balzar M, Winter MJ, de Boer CJ, Litvinov SV (1999) The biology of the 17-1A antigen (Ep-CAM). J Mol Med 77(10):699–712

    Article  PubMed  CAS  Google Scholar 

  19. Baeuerle PA, Gires O (2007) EpCAM (CD326) finding its role in cancer. Br J Cancer 96(3):417–423

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Imrich S, Hachmeister M, Gires O (2012) EpCAM and its potential role in tumor-initiating cells. Cell Adh Migr 6(1):30–38. doi:10.4161/cam.18953

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez B, Denzel S, Mack B, Conrad M, Gires O (2009) EpCAM is involved in maintenance of the murine embryonic stem cell phenotype. Stem Cells 27(8):1782–1791. doi:10.1002/stem.97

    Article  PubMed  CAS  Google Scholar 

  22. Ng VY, Ang SN, Chan JX, Choo AB (2009) Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells. doi:10.1002/stem.221

    Google Scholar 

  23. Terstappen LW, Rao C, Gross S, Kotelnikov V, Racilla E, Uhr J, Weiss A (1998) Flow cytometry–principles and feasibility in transfusion medicine. Enumeration of epithelial derived tumor cells in peripheral blood. Vox Sang 74(Suppl 2):269–274

    Article  PubMed  CAS  Google Scholar 

  24. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791. doi:10.1056/NEJMoa040766

    Article  PubMed  CAS  Google Scholar 

  25. Wallwiener M, Hartkopf AD, Baccelli I, Riethdorf S, Schott S, Pantel K, Marme F, Sohn C, Trumpp A, Rack B, Aktas B, Solomayer EF, Muller V, Janni W, Schneeweiss A, Fehm TN (2013) The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer. Breast Cancer Res Treat 137(2):503–510. doi:10.1007/s10549-012-2382-0

    Article  PubMed  Google Scholar 

  26. Zhang L, Riethdorf S, Wu G, Wang T, Yang K, Peng G, Liu J, Pantel K (2012) Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res 18(20):5701–5710. doi:10.1158/1078-0432.CCR-12-1587

    Article  PubMed  Google Scholar 

  27. Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, Lilja H, Schwartz L, Larson S, Fleisher M, Scher HI (2007) Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 13(23):7053–7058. doi:10.1158/1078-0432.CCR-07-1506

    Article  PubMed  CAS  Google Scholar 

  28. Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, Picus J, Morse M, Mitchell E, Miller MC, Doyle GV, Tissing H, Terstappen LW, Meropol NJ (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 26(19):3213–3221. doi:10.1200/JCO.2007.15.8923

    Article  PubMed  Google Scholar 

  29. Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao L, Bedrosian I, Kuerer HM, Krishnamurthy S (2012) Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 13(7):688–695. doi:10.1016/S1470-2045(12)70209-7

    Article  PubMed  Google Scholar 

  30. Rack B, Schindlbeck C, Juckstock J, Andergassen U, Hepp P, Zwingers T, Friedl TW, Lorenz R, Tesch H, Fasching PA, Fehm T, Schneeweiss A, Lichtenegger W, Beckmann MW, Friese K, Pantel K, Janni W, Group SS (2014) Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 106(5). doi:10.1093/jnci/dju066

  31. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bauerle T, Wallwiener M, Holland-Letz T, Hofner T, Sprick M, Scharpff M, Marme F, Sinn HP, Pantel K, Weichert W, Trumpp A (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544. doi:10.1038/nbt.2576

    Article  PubMed  CAS  Google Scholar 

  32. Litvinov SV, Bakker HA, Gourevitch MM, Velders MP, Warnaar SO (1994) Evidence for a role of the epithelial glycoprotein 40 (Ep-CAM) in epithelial cell–cell adhesion. Cell Adhes Commun 2(5):417–428

    Article  PubMed  CAS  Google Scholar 

  33. Punnoose EA, Atwal SK, Spoerke JM, Savage H, Pandita A, Yeh RF, Pirzkall A, Fine BM, Amler LC, Chen DS, Lackner MR (2010) Molecular biomarker analyses using circulating tumor cells. PLoS ONE 5(9):e12517. doi:10.1371/journal.pone.0012517

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sieuwerts AM, Kraan J, Bolt J, van der Spoel P, Elstrodt F, Schutte M, Martens JW, Gratama JW, Sleijfer S, Foekens JA (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101(1):61–66. doi:10.1093/jnci/djn419

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Rao CG, Chianese D, Doyle GV, Miller MC, Russell T, Sanders RA Jr, Terstappen LW (2005) Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol 27(1):49–57

    PubMed  CAS  Google Scholar 

  36. Steinert G, Scholch S, Niemietz T, Iwata N, Garcia SA, Behrens B, Voigt A, Kloor M, Benner A, Bork U, Rahbari NN, Buchler MW, Stoecklein NH, Weitz J, Koch M (2014) Immune escape and survival mechanisms in circulating tumor cells of colorectal cancer. Cancer Res 74(6):1694–1704. doi:10.1158/0008-5472.CAN-13-1885

    Article  PubMed  CAS  Google Scholar 

  37. Driemel C, Kremling H, Schumacher S, Will D, Wolters J, Lindenlauf N, Mack B, Baldus SA, Hoya V, Pietsch JM, Panagiotidou P, Raba K, Vay C, Vallbohmer D, Harreus U, Knoefel WT, Stoecklein NH, Gires O (2013) Context-dependent adaption of EpCAM expression in early systemic esophageal cancer. Oncogene. doi:10.1038/onc.2013.441

    PubMed  Google Scholar 

  38. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD, Marchetti D (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5((180)):180ra148. doi:10.1126/scitranslmed.3005109

    Google Scholar 

  39. Gorges TM, Tinhofer I, Drosch M, Rose L, Zollner TM, Krahn T, von Ahsen O (2012) Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer 12:178. doi:10.1186/1471-2407-12-178

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890. doi:10.1016/j.cell.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  41. Thiery JP, Lim CT (2013) Tumor dissemination: an EMT affair. Cancer Cell 23(3):272–273. doi:10.1016/j.ccr.2013.03.004

    Article  PubMed  CAS  Google Scholar 

  42. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T (2005) Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nat Rev Cancer 5(9):744–749. doi:10.1038/nrc1694

    Article  PubMed  CAS  Google Scholar 

  43. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829. doi:10.1016/j.devcel.2008.05.009

    Article  PubMed  CAS  Google Scholar 

  44. Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J (2012) Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22(6):725–736. doi:10.1016/j.ccr.2012.09.022

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Scheel C, Eaton EN, Li SH, Chaffer CL, Reinhardt F, Kah KJ, Bell G, Guo W, Rubin J, Richardson AL, Weinberg RA (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145(6):926–940. doi:10.1016/j.cell.2011.04.029

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Heldin CH, Landstrom M, Moustakas A (2009) Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21(2):166–176. doi:10.1016/j.ceb.2009.01.021

    Article  PubMed  CAS  Google Scholar 

  47. Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci 98(10):1512–1520. doi:10.1111/j.1349-7006.2007.00550.x

    Article  PubMed  CAS  Google Scholar 

  48. Kim K, Lu Z, Hay ED (2002) Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biol Int 26(5):463–476

    Article  PubMed  CAS  Google Scholar 

  49. Tam WL, Weinberg RA (2013) The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 19(11):1438–1449. doi:10.1038/nm.3336

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Nakaya Y, Kuroda S, Katagiri YT, Kaibuchi K, Takahashi Y (2004) Mesenchymal-epithelial transition during somitic segmentation is regulated by differential roles of Cdc42 and Rac1. Dev Cell 7(3):425–438. doi:10.1016/j.devcel.2004.08.003

    Article  PubMed  CAS  Google Scholar 

  51. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10(5):593–601. doi:10.1038/ncb1722

    Article  PubMed  CAS  Google Scholar 

  52. Massoner P, Thomm T, Mack B, Untergasser G, Martowicz A, Bobowski K, Klocker H, Gires O, Puhr M (2014) EpCAM is overexpressed in local and metastatic prostate cancer, suppressed by chemotherapy and modulated by MET-associated miRNA-200c/205. Br J Cancer. doi:10.1038/bjc.2014.366

    PubMed  Google Scholar 

  53. Gupta PB, Fillmore CM, Jiang G, Shapira SD, Tao K, Kuperwasser C, Lander ES (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644. doi:10.1016/j.cell.2011.07.026

    Article  PubMed  CAS  Google Scholar 

  54. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, Isakoff SJ, Ciciliano JC, Wells MN, Shah AM, Concannon KF, Donaldson MC, Sequist LV, Brachtel E, Sgroi D, Baselga J, Ramaswamy S, Toner M, Haber DA, Maheswaran S (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584. doi:10.1126/science.1228522

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11(4):R46. doi:10.1186/bcr2333

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cierna Z, Mego M, Janega P, Karaba M, Minarik G, Benca J, Sedlackova T, Cingelova S, Gronesova P, Manasova D, Pindak D, Sufliarsky J, Danihel L, Reuben JM, Mardiak J (2014) Matrix metalloproteinase 1 and circulating tumor cells in early breast cancer. BMC Cancer 14:472. doi:10.1186/1471-2407-14-472

    Article  PubMed  PubMed Central  Google Scholar 

  57. Winkler J, Martin-Killias P, Pluckthun A, Zangemeister-Wittke U (2009) EpCAM-targeted delivery of nanocomplexed siRNA to tumor cells with designed ankyrin repeat proteins. Mol Cancer Ther 8(9):2674–2683. doi:10.1158/1535-7163.MCT-09-0402

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  58. Gosens MJ, van Kempen LC, van de Velde CJ, van Krieken JH, Nagtegaal ID (2007) Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol 20(2):221–232. doi:10.1038/modpathol.3800733

    Article  PubMed  CAS  Google Scholar 

  59. Alberti S, Ambrogi F, Boracchi P, Fornili M, Querzoli P, Pedriali M, La Sorda R, Lattanzio R, Tripaldi R, Piantelli M, Biganzoli E, Coradini D (2012) Cytoplasmic Trop-1/Ep-CAM overexpression is associated with a favorable outcome in node-positive breast cancer. Jpn J Clin Oncol 42(12):1128–1137. doi:10.1093/jjco/hys159

    Article  PubMed  Google Scholar 

  60. Munz M, Baeuerle PA, Gires O (2009) The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res 69(14):5627–5629. doi:10.1158/0008-5472.CAN-09-0654

    Article  PubMed  CAS  Google Scholar 

  61. Carpenter G, Red Brewer M (2009) EpCAM: another surface-to-nucleus missile. Cancer Cell 15(3):165–166. doi:10.1016/j.ccr.2009.02.005

    Article  PubMed  CAS  Google Scholar 

  62. Maetzel D, Denzel S, Mack B, Canis M, Went P, Benk M, Kieu C, Papior P, Baeuerle PA, Munz M, Gires O (2009) Nuclear signalling by tumour-associated antigen EpCAM. Nat Cell Biol 11(2):162–171. doi:10.1038/ncb1824

    Article  PubMed  CAS  Google Scholar 

  63. Hachmeister M, Bobowski KD, Hogl S, Dislich B, Fukumori A, Eggert C, Mack B, Kremling H, Sarrach S, Coscia F, Zimmermann W, Steiner H, Lichtenthaler SF, Gires O (2013) Regulated intramembrane proteolysis and degradation of murine epithelial cell adhesion molecule mEpCAM. PLoS ONE 8(8):e71836. doi:10.1371/journal.pone.0071836

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. Spizzo G, Gastl G, Obrist P, Fong D, Haun M, Grunewald K, Parson W, Eichmann C, Millinger S, Fiegl H, Margreiter R, Amberger A (2006) Methylation status of the Ep-CAM promoter region in human breast cancer cell lines and breast cancer tissue. Cancer Lett 246(1):253–261

    PubMed  Google Scholar 

  65. Lu TY, Lu RM, Liao MY, Yu J, Chung CH, Kao CF, Wu HC (2010) Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chem 285(12):8719–8732. doi:10.1074/jbc.M109.077081

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Tai KY, Shiah SG, Shieh YS, Kao YR, Chi CY, Huang E, Lee HS, Chang LC, Yang PC, Wu CW (2007) DNA methylation and histone modification regulate silencing of epithelial cell adhesion molecule for tumor invasion and progression. Oncogene 26(27):3989–3997

    Article  PubMed  CAS  Google Scholar 

  67. Vannier C, Mock K, Brabletz T, Driever W (2013) Zeb1 regulates E-cadherin and Epcam expression to control cell behavior in early zebrafish development. J Biol Chem. doi:10.1074/jbc.M113.467787

    Google Scholar 

  68. Lynch HT, Lynch JF, Snyder CL, Riegert-Johnson D (2011) EPCAM deletions, lynch syndrome, and cancer risk. Lancet Oncol 12(1):5–6. doi:10.1016/S1470-2045(10)70291-6

    Article  PubMed  Google Scholar 

  69. Kastrinos F, Stoffel EM (2014) History, genetics, and strategies for cancer prevention in lynch syndrome. Clin Gastroenterol Hepatol 12(5):715–727. doi:10.1016/j.cgh.2013.06.031

    Article  PubMed  CAS  Google Scholar 

  70. Slanchev K, Carney TJ, Stemmler MP, Koschorz B, Amsterdam A, Schwarz H, Hammerschmidt M (2009) The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet 5(7):e1000563. doi:10.1371/journal.pgen.1000563

    Article  PubMed  PubMed Central  Google Scholar 

  71. Maghzal N, Vogt E, Reintsch W, Fraser JS, Fagotto F (2010) The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. J Cell Biol 191(3):645–659. doi:10.1083/jcb.201004074

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  72. Maghzal N, Kayali HA, Rohani N, Kajava AV, Fagotto F (2013) EpCAM controls actomyosin contractility and cell adhesion by direct inhibition of PKC. Dev Cell 27(3):263–277. doi:10.1016/j.devcel.2013.10.003

    Article  PubMed  CAS  Google Scholar 

  73. Balzar M, Briaire-de Bruijn IH, Rees-Bakker HA, Prins FA, Helfrich W, de Leij L, Riethmuller G, Alberti S, Warnaar SO, Fleuren GJ, Litvinov SV (2001) Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Mol Cell Biol 21(7):2570–2580

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Litvinov SV, Balzar M, Winter MJ, Bakker HA, Briaire-de Bruijn IH, Prins F, Fleuren GJ, Warnaar SO (1997) Epithelial cell adhesion molecule (Ep-CAM) modulates cell–cell interactions mediated by classic cadherins. J Cell Biol 139(5):1337–1348

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  75. Lei Z, Maeda T, Tamura A, Nakamura T, Yamazaki Y, Shiratori H, Yashiro K, Tsukita S, Hamada H (2012) EpCAM contributes to formation of functional tight junction in the intestinal epithelium by recruiting claudin proteins. Dev Biol 371(2):136–145. doi:10.1016/j.ydbio.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  76. Guerra E, Lattanzio R, La Sorda R, Dini F, Tiboni GM, Piantelli M, Alberti S (2012) mTrop1/Epcam knockout mice develop congenital tufting enteropathy THROUGH dysregulation of intestinal E-cadherin/beta-catenin. PLoS ONE 7(11):e49302. doi:10.1371/journal.pone.0049302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Osta WA, Chen Y, Mikhitarian K, Mitas M, Salem M, Hannun YA, Cole DJ, Gillanders WE (2004) EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 64(16):5818–5824

    Article  PubMed  CAS  Google Scholar 

  78. Sankpal NV, Willman MW, Fleming TP, Mayfield JD, Gillanders WE (2009) Transcriptional repression of epithelial cell adhesion molecule contributes to p53 control of breast cancer invasion. Cancer Res 69(3):753–757

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Biddle A, Liang X, Gammon L, Fazil B, Harper LJ, Emich H, Costea DE, Mackenzie IC (2011) Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res 71(15):5317–5326. doi:10.1158/0008-5472.CAN-11-1059

    Article  PubMed  CAS  Google Scholar 

  80. Martowicz A, Spizzo G, Gastl G, Untergasser G (2012) Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines. BMC Cancer 12:501. doi:10.1186/1471-2407-12-501

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  81. Soysal SD, Muenst S, Barbie T, Fleming T, Gao F, Spizzo G, Oertli D, Viehl CT, Obermann EC, Gillanders WE (2013) EpCAM expression varies significantly and is differentially associated with prognosis in the luminal B HER2(+), basal-like, and HER2 intrinsic subtypes of breast cancer. Br J Cancer 108(7):1480–1487. doi:10.1038/bjc.2013.80

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Munz M, Hofmann T, Scheibe B, Gange M, Junghanns K, Zeidler R, Gires O (2004) The carcinoma-associated antigen EpCAM induces glyoxalase 1 resulting in enhanced methylglyoxal turnover. Cancer Genomics Proteomics 1(3):241–247

    Google Scholar 

  83. Munz M, Kieu C, Mack B, Schmitt B, Zeidler R, Gires O (2004) The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23(34):5748–5758

    Article  PubMed  Google Scholar 

  84. Munz M, Zeidler R, Gires O (2005) The tumor-associated antigen EpCAM up-regulates the fatty acid binding protein E-FABP. Cancer Lett 225(1):151–157

    Article  PubMed  Google Scholar 

  85. Chaves-Perez A, Mack B, Maetzel D, Kremling H, Eggert C, Harreus U, Gires O (2013) EpCAM regulates cell cycle progression via control of cyclin D1 expression. Oncogene 32(5):641–650. doi:10.1038/onc.2012.75

    Article  PubMed  CAS  Google Scholar 

  86. Lu H, Ma J, Yang Y, Shi W, Luo L (2013) EpCAM is an endoderm-specific Wnt derepressor that licenses hepatic development. Dev Cell 24(5):543–553. doi:10.1016/j.devcel.2013.01.021

    Article  PubMed  CAS  Google Scholar 

  87. Fong D, Moser P, Kasal A, Seeber A, Gastl G, Martowicz A, Wurm M, Mian C, Obrist P, Mazzoleni G, Spizzo G (2014) Loss of membranous expression of the intracellular domain of EpCAM is a frequent event and predicts poor survival in patients with pancreatic cancer. Histopathology 64(5):683–692. doi:10.1111/his.12307

    Article  PubMed  Google Scholar 

  88. Ralhan R, Cao J, Lim T, Macmillan C, Freeman JL, Walfish PG (2010) EpCAM nuclear localization identifies aggressive thyroid cancer and is a marker for poor prognosis. BMC Cancer 10(1):331. doi:10.1186/1471-2407-10-331

    Article  PubMed  PubMed Central  Google Scholar 

  89. He HC, Kashat L, Kak I, Kunavisarut T, Gundelach R, Kim D, So AK, Macmillan C, Freeman JL, Ralhan R, Walfish PG (2012) An Ep-ICD based index is a marker of aggressiveness and poor prognosis in thyroid carcinoma. PLoS ONE 7(9):e42893. doi:10.1371/journal.pone.0042893

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Ralhan R, He HC, So AK, Tripathi SC, Kumar M, Hasan MR, Kaur J, Kashat L, MacMillan C, Chauhan SS, Freeman JL, Walfish PG (2010) Nuclear and cytoplasmic accumulation of Ep-ICD is frequently detected in human epithelial cancers. PLoS ONE 5(11):e14130. doi:10.1371/journal.pone.0014130

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Maaser K, Borlak J (2008) A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators. Br J Cancer 99(10):1635–1643

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  92. Yoshida GJ, Saya H (2014) EpCAM expression in the prostate cancer makes the difference in the response to growth factors. Biochem Biophys Res Commun 443(1):239–245. doi:10.1016/j.bbrc.2013.11.093

    Article  PubMed  CAS  Google Scholar 

  93. Coumans FA, van Dalum G, Beck M, Terstappen LW (2013) Filtration parameters influencing circulating tumor cell enrichment from whole blood. PLoS ONE 8(4):e61774. doi:10.1371/journal.pone.0061774

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  94. Lin HK, Zheng S, Williams AJ, Balic M, Groshen S, Scher HI, Fleisher M, Stadler W, Datar RH, Tai YC, Cote RJ (2010) Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin Cancer Res 16(20):5011–5018. doi:10.1158/1078-0432.CCR-10-1105

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  95. Schulze K, Gasch C, Staufer K, Nashan B, Lohse AW, Pantel K, Riethdorf S, Wege H (2013) Presence of EpCAM-positive circulating tumor cells as biomarker for systemic disease strongly correlates to survival in patients with hepatocellular carcinoma. Int J Cancer 133(9):2165–2171. doi:10.1002/ijc.28230

    Article  PubMed  CAS  Google Scholar 

  96. Peeters DJ, van Dam PJ, Van den Eynden GG, Rutten A, Wuyts H, Pouillon L, Peeters M, Pauwels P, Van Laere SJ, van Dam PA, Vermeulen PB, Dirix LY (2014) Detection and prognostic significance of circulating tumour cells in patients with metastatic breast cancer according to immunohistochemical subtypes. Br J Cancer 110(2):375–383. doi:10.1038/bjc.2013.743

    Article  PubMed  CAS  Google Scholar 

  97. Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the Cell Search system. Clin Cancer Res 13(3):920–928

    Article  PubMed  CAS  Google Scholar 

  98. Simon M, Stefan N, Pluckthun A, Zangemeister-Wittke U (2013) Epithelial cell adhesion molecule-targeted drug delivery for cancer therapy. Expert Opin Drug Deliv 10(4):451–468. doi:10.1517/17425247.2013.759938

    Article  PubMed  CAS  Google Scholar 

  99. Armstrong A, Eck SL (2003) EpCAM: a new therapeutic target for an old cancer antigen. Cancer Biol Ther 2(4):320–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

O. Gires and N. H. Stoecklein were funded by the Wilhelm-Sander-Stiftung (2009.083.1); O. Gires was funded by the Deutsche Forschungsgemeinschaft (DFG GI 540/3-1) and the Wilhelm-Sander-Stiftung (2012.051.1); N. H. Stoecklein was funded by the Deutsche Forschungsgemeinschaft (DFG STO464/2-2), and the Deutsche Krebshilfe e.V. (109600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Gires.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gires, O., Stoecklein, N.H. Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences. Cell. Mol. Life Sci. 71, 4393–4402 (2014). https://doi.org/10.1007/s00018-014-1693-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1693-1

Keywords

Navigation