Skip to main content

Advertisement

Log in

Tracking migration during human T cell development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Specialized microenvironments within the thymus are comprised of unique cell types with distinct roles in directing the development of a diverse, functional, and self-tolerant T cell repertoire. As they differentiate, thymocytes transit through a number of developmental intermediates that are associated with unique localization and migration patterns. For example, during one particular developmental transition, immature thymocytes more than double in speed as they become mature T cells that are among the fastest cells in the body. This transition is associated with dramatic changes in the expression of chemokine receptors and their antagonists, cell adhesion molecules, and cytoskeletal components to direct the maturing thymocyte population from the cortex to medulla. Here we discuss the dynamic changes in behavior that occur throughout thymocyte development, and provide an overview of the cell-intrinsic and extrinsic mechanisms that regulate human thymocyte migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AIRE:

Autoimmune regulator

BM:

Bone marrow

CMJ:

Cortical medullary junction

cTEC:

Cortical thymic epithelial cell

DCs:

Dendritic cells

DN:

CD4CD8, double negative

DP:

CD4+CD8+, double positive

ECM:

Extracellular matrix

FTY720:

Fingolimod

FTOC:

Fetal thymic organ culture

HPCs:

Hematopoietic progenitor cells

ICAM-1:

Intercellular adhesion molecule 1

IL2Rgamma:

IL2 receptor gamma chain

mTEC:

Medullary thymic epithelial cell

MS:

Multiple sclerosis

MST1:

Mammalian sterile 20-like protein kinase 1

NOD:

Non-obese diabetic

pMHC:

Peptide-MHC complexes

PNAd:

Peripheral node addressin

PSGL-1:

P-selectin glycoprotein ligand 1

SCID:

Severe combined immune deficiency

SP:

CD4+CD8 or CD8+CD4, single positive

S1P:

Sphingosine-1-phosphate

TCR:

T cell receptor

TEC:

Thymic epithelial cell

TSLP:

Thymic stromal lymphopoietin

VCAM-1:

Vascular cell adhesion molecule 1

References

  1. Nakagawa T, Roth W, Wong P et al (1998) Cathepsin L: critical role in li degradation and CD4 T cell selection in the thymus. Science 280:450–453. doi:10.1126/science.280.5362.450

    CAS  PubMed  Google Scholar 

  2. Murata S, Sasaki K, Kishimoto T et al (2007) Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316:1349–1353. doi:10.1126/science.1141915

    CAS  PubMed  Google Scholar 

  3. Honey K, Nakagawa T, Peters C, Rudensky A (2002) Cathepsin L regulates CD4+ T cell selection independently of its effect on invariant chain: a role in the generation of positively selecting peptide ligands. J Exp Med 195:1349–1358. doi:10.1084/jem.20011904

    CAS  PubMed Central  PubMed  Google Scholar 

  4. McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA (2008) Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J Exp Med 205:2575–2584. doi:10.1084/jem.20070254

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Anderson MS, Venanzi ES, Klein L et al (2002) Projection of an immunological self shadow within the thymus by the AIRE protein. Science 298:1395–1401. doi:10.1126/science.1075958

    CAS  PubMed  Google Scholar 

  6. Annunziato F, Romagnani P, Cosmi L (2001) Chemokines and lymphopoiesis in human thymus. Trends Immunol 22:277–281

    CAS  PubMed  Google Scholar 

  7. Hernández-López C, Varas A (2002) Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood 99:546–554

    PubMed  Google Scholar 

  8. Griffith AV, Fallahi M, Nakase H et al (2009) Spatial mapping of thymic stromal microenvironments reveals unique features influencing T lymphoid differentiation. Immunity 31:999–1009. doi:10.1016/j.immuni.2009.09.024

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Gotter J, Brors B, Hergenhahn M et al (2004) Medullary epithelial cells of the human thymus express a highly diverse selection of tissue-specific genes colocalized in chromosomal clusters. J Exp Med 199:155–166. doi:10.1084/jem.20031677

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Entschladen F, Drell TL IV, Lang K et al (2005) Analysis methods of human cell migration. Exp Cell Res 307:418–426. doi:10.1016/j.yexcr.2005.03.029

    CAS  PubMed  Google Scholar 

  11. Weber M, Hauschild R, Schwarz J et al (2013) Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339:328–332. doi:10.1126/science.1228456

    CAS  PubMed  Google Scholar 

  12. Caserta S, Campanello S, Tomaiuolo G, Sabetta L, Guido S (2013) A Methodology to study chemotaxis in 3-D collagen gels. AIChE J 59:4025–4035. doi:10.1002/aic.14164

    CAS  Google Scholar 

  13. Plum J, Smedt M, Leclercq G et al (2008) Human intrathymic development: a selective approach. Semin Immunopathol 30:411–423. doi:10.1007/s00281-008-0135-2

    CAS  PubMed  Google Scholar 

  14. Galy A, Verma S, Barcena A, Spits H (1993) Precursors of CD3+CD4+CD8+ cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development. J Exp Med 178:391–401

    CAS  PubMed  Google Scholar 

  15. Barcena A, Galy AH, Punnonen J et al (1994) Lymphoid and myeloid differentiation of fetal liver CD34+ lineage-cells in human thymic organ culture. J Exp Med 180:123–132

    CAS  PubMed  Google Scholar 

  16. Halkias J, Melichar HJ, Taylor KT et al (2013) Opposing chemokine gradients control human thymocyte migration in situ. J Clin Invest 123:2131–2142. doi:10.1172/JCI67175

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Chen Q, Khoury M, Chen J (2009) Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc Natl Acad Sci USA 106:21783–21788. doi:10.1073/pnas.0912274106

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Huntington ND, Alves NL, Legrand N et al (2011) Autonomous and extrinsic regulation of thymopoiesis inhuman immune system (HIS) mice. Eur J Immunol 41:2883–2893. doi:10.1002/eji.201141586

    CAS  PubMed  Google Scholar 

  19. Eisenman J, Ahdieh M, Beers C et al (2002) Interleukin-15 interactions with interleukin-15 receptor complexes: characterization and species specificity. Cytokine 20:121–129. doi:10.1006/cyto.2002.1989

    CAS  PubMed  Google Scholar 

  20. Farley AM, Morris LX, Vroegindeweij E et al (2013) Dynamics of thymus organogenesis and colonization in early human development. Development 140:2015–2026. doi:10.1242/dev.087320

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Gordon J, Manley NR (2011) Mechanisms of thymus organogenesis and morphogenesis. Development 138:3865–3878. doi:10.1242/dev.059998

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Lobach DF, Haynes BF (1987) Ontogeny of the human thymus during fetal development. J Clin Immunol 7:81–97

    CAS  PubMed  Google Scholar 

  23. Haynes BFB, Heinly CSC (1995) Early human T cell development: analysis of the human thymus at the time of initial entry of hematopoietic stem cells into the fetal thymic microenvironment. J Exp Med 181:1445–1458

    CAS  PubMed  Google Scholar 

  24. Haynes BFB, Scearce RMR, Lobach DFD, Hensley LLL (1984) Phenotypic characterization and ontogeny of mesodermal-derived and endocrine epithelial components of the human thymic microenvironment. J Exp Med 159:1149–1168

    CAS  PubMed  Google Scholar 

  25. Pignata C, Gaetaniello L, Masci AM et al (2001) Human equivalent of the mouse Nude/SCID phenotype: long-term evaluation of immunologic reconstitution after bone marrow transplantation. Blood 97:880–885. doi:10.1182/blood.V97.4.880

    CAS  PubMed  Google Scholar 

  26. Nehls MM, Pfeifer DD, Schorpp MM et al (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372:103–107. doi:10.1038/372103a0

    CAS  PubMed  Google Scholar 

  27. Frank J, Pignata C, Panteleyev AA et al (1999) Exposing the human nude phenotype. Nature 398:473–474. doi:10.1038/18997

    CAS  PubMed  Google Scholar 

  28. Finnish-German APECED Consortium (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17:399–403. doi:10.1038/ng1297-399

    Google Scholar 

  29. Nagamine K, Peterson P, Scott HS et al (1997) Positional cloning of the APECED gene. Nat Genet 17:393–398. doi:10.1038/ng1297-393

    CAS  PubMed  Google Scholar 

  30. Havran WLW, Allison JPJ (1988) Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335:443–445. doi:10.1038/335443a0

    CAS  PubMed  Google Scholar 

  31. Ikuta K, Kina T, MacNeil I et al (1990) A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62:863–874

    CAS  PubMed  Google Scholar 

  32. Spear PG, Wang AL, Rutishauser U, Edelman GM (1973) Characterization of splenic lymphoid cells in fetal and newborn mice. J Exp Med 138:557–573

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Stites DP, Pavia CS (1979) Ontogeny of human T cells. Pediatrics 64:795–802

    CAS  PubMed  Google Scholar 

  34. Asano M, Toda M, Sakaguchi N, Sakaguchi S (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 184:387–396

    CAS  PubMed  Google Scholar 

  35. Cupedo T, Nagasawa M, Weijer K et al (2005) Development and activation of regulatory T cells in the human fetus. Eur J Immunol 35:383–390. doi:10.1002/eji.200425763

    CAS  PubMed  Google Scholar 

  36. Darrasse-Jeze G, Marodon G, Salomon BL, Catala M, Klatzmann D (2005) Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood 105:4715–4721. doi:10.1182/blood-2004-10-4051

    CAS  PubMed  Google Scholar 

  37. Michaëlsson J, Mold JE, McCune JM, Nixon DF (2006) Regulation of T cell responses in the developing human fetus. J Immunol 176:5741–5748

    PubMed  Google Scholar 

  38. Holländer GAG, Wang BB, Nichogiannopoulou AA et al (1995) Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373:350–353. doi:10.1038/373350a0

    PubMed  Google Scholar 

  39. Shores EWE, van Ewijk WW, Singer AA (1991) Disorganization and restoration of thymic medullary epithelial cells in T cell receptor-negative scid mice: evidence that receptor-bearing lymphocytes influence maturation of the thymic microenvironment. Eur J Immunol 21:1657–1661. doi:10.1002/eji.1830210711

    CAS  PubMed  Google Scholar 

  40. Klug DBD, Carter CC, Crouch EE et al (1998) Interdependence of cortical thymic epithelial cell differentiation and T-lineage commitment. Proc Natl Acad Sci USA 95:11822–11827

    CAS  PubMed Central  PubMed  Google Scholar 

  41. van Ewijk W, Holländer G, Terhorst C, Wang B (2000) Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127:1583–1591

    PubMed  Google Scholar 

  42. Irla M, Hugues S, Gill J et al (2008) Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29:451–463. doi:10.1016/j.immuni.2008.08.007

    CAS  PubMed  Google Scholar 

  43. Hikosaka Y, Nitta T, Ohigashi I et al (2008) The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29:438–450. doi:10.1016/j.immuni.2008.06.018

    CAS  PubMed  Google Scholar 

  44. Poliani PL, Facchetti F, Ravanini M et al (2009) Early defects in human T-cell development severely affect distribution and maturation of thymic stromal cells: possible implications for the pathophysiology of Omenn syndrome. Blood 114:105–108. doi:10.1182/blood-2009-03-211029

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Villa A, Notarangelo LD, Chaim M, Roifman MDF (2008) Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol 122:1082–1086. doi:10.1016/j.jaci.2008.09.037

    CAS  PubMed  Google Scholar 

  46. Villa AA, Santagata SS, Bozzi FF et al (1998) Partial V(D)J recombination activity leads to Omenn syndrome. Cell 93:12. doi:10.1016/S0092-8674(00)81448-8

    Google Scholar 

  47. Fischer A (2007) Human primary immunodeficiency diseases. Immunity 27:835–845. doi:10.1016/j.immuni.2007.11.012

    CAS  PubMed  Google Scholar 

  48. Cavadini P, Vermi W, Facchetti F et al (2005) AIRE deficiency in thymus of 2 patients with Omenn syndrome. J Clin Invest 115:728–732. doi:10.1172/JCI23087

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Marrella V, Poliani PL, Casati A et al (2007) A hypomorphic R229Q Rag2 mouse mutant recapitulates human Omenn syndrome. J Clin Invest 117:1260–1269. doi:10.1172/JCI30928DS1

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Patel DD, Gooding ME, Parrott RE et al (2000) Thymic function after hematopoietic stem-cell transplantation for the treatment of severe combined immunodeficiency. N Engl J Med 342:1325–1332. doi:10.1056/NEJM200005043421804

    CAS  PubMed  Google Scholar 

  51. Sarzotti M, Patel DD, Li X et al (2003) T cell repertoire development in humans with SCID after nonablative allogeneic marrow transplantation. J Immunol 170:2711–2718

    CAS  PubMed  Google Scholar 

  52. Watanabe N, Wang Y-H, Lee HK et al (2005) Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+regulatory T cells in human thymus. Nature 436:1181–1185. doi:10.1038/nature03886

    CAS  PubMed  Google Scholar 

  53. Melichar HJ, Ross JO, Herzmark P et al (2013) Distinct temporal patterns of T cell receptor signaling during positive versus negative selection in situ. Sci Signal 6:ra92. doi:10.1126/scisignal.2004400

    PubMed Central  PubMed  Google Scholar 

  54. Volkmann A, Zal T, Stockinger B (1997) Antigen presenting cells in the thymus that can negatively select MHC class II-restricted T cells recognizing a circulating self antigen. Immunol Lett 56:87–88. doi:10.1016/S0165-2478(97)85341-2

    Google Scholar 

  55. Surh CD, Sprent J (1994) T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372:100–103

    CAS  PubMed  Google Scholar 

  56. Fadok VA, Voelker DR, Campbell PA et al (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  57. Dzhagalov IL, Chen KG, Herzmark P, Robey EA (2013) Elimination of self-reactive T cells in the thymus: a timeline for negative selection. PLoS Biol 11:e1001566. doi:10.1371/journal.pbio.1001566.s007

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Gameiro J, Nagib P, Verinaud L (2010) The thymus microenvironment in regulating thymocyte differentiation. Cell Adhesion Migr 4:382–390

    Google Scholar 

  59. Savino W (2004) Molecular mechanisms governing thymocyte migration: combined role of chemokines and extracellular matrix. J Leukoc Biol 75:951–961. doi:10.1189/jlb.1003455

    CAS  PubMed  Google Scholar 

  60. Kinashi T (2005) Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol 5:546–559. doi:10.1038/nri1646

    CAS  PubMed  Google Scholar 

  61. Olson TS, Ley K (2002) Chemokines and chemokine receptors in leukocyte trafficking. Am J Physiol Regul Integr Comp Physiol 283:R7–R28. doi:10.1152/ajpregu.00738.2001

    CAS  PubMed  Google Scholar 

  62. Annunziato F, Romagnani P, Cosmi L et al (2000) Macrophage-derived chemokine and EBI1-ligand chemokine attract human thymocytes in different stages of development and are produced by distinct subsets of medullary epithelial cells: possible implications for negative selection. J Immunol 4:135–137

    Google Scholar 

  63. Chantry D, Romagnani P, Raport CJ et al (1999) Macrophage-derived chemokine is localized to thymic medullary epithelial cells and is a chemoattractant for CD3(+), CD4(+), CD8(low) thymocytes. Blood 94:1890–1898

    CAS  PubMed  Google Scholar 

  64. Romagnani P, Annunziato F, Lazzeri E et al (2001) Interferon-inducible protein 10, monokine induced by interferon gamma, and interferon-inducible T-cell alpha chemoattractant are produced by thymic epithelial cells and attract T-cell receptor (TCR) alphabeta+ CD8+ single-positive T cells, TCRgammadelta+ T cells, and natural killer-type cells in human thymus. Blood 97:601–607

    CAS  PubMed  Google Scholar 

  65. Franz-Bacon K, Dairaghi DJ, Boehme SA et al (1999) Human thymocytes express CCR-3 and are activated by eotaxin. Blood 93:3233–3240

    CAS  PubMed  Google Scholar 

  66. Lepelletier YY, Smaniotto SS, Hadj-Slimane RR et al (2007) Control of human thymocyte migration by neuropilin-1/semaphorin-3A-mediated interactions. Proc Natl Acad Sci USA 104:5545–5550. doi:10.1073/pnas.0700705104

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Garcia F, Lepelletier Y, Smaniotto S et al (2011) Inhibitory effect of semaphorin-3A, a known axon guidance molecule, in the human thymocyte migration induced by CXCL12. J Leukoc Biol. doi:10.1189/jlb.0111031

    Google Scholar 

  68. Haddad R, Guimiot F, Six E et al (2006) Dynamics of thymus-colonizing cells during human development. Immunity 24:217–230. doi:10.1016/j.immuni.2006.01.008

    CAS  PubMed  Google Scholar 

  69. Hao QL, George AA, Zhu J et al (2007) Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7-lympho-myeloid thymic progenitors. Blood 111:1318–1326. doi:10.1182/blood-2007-08-106294

    PubMed  Google Scholar 

  70. Awong G, Herer E, Surh CD et al (2009) Characterization in vitro and engraftment potential in vivo of human progenitor T cells generated from hematopoietic stem cells. Blood 114:972–982. doi:10.1182/blood-2008-10-187013

    CAS  PubMed  Google Scholar 

  71. Kyewski BAB (1987) Seeding of thymic microenvironments defined by distinct thymocyte-stromal cell interactions is developmentally controlled. J Exp Med 166:520–538

    CAS  PubMed  Google Scholar 

  72. Bleul CC, Boehm T (2000) Chemokines define distinct microenvironments in the developing thymus. Eur J Immunol 30:3371–3379. doi:10.1002/1521-4141(2000012)30:12<3371:AID-IMMU3371>3.0.CO;2-L

    CAS  PubMed  Google Scholar 

  73. Wurbel MA, Malissen M, Guy-Grand D, Meffre E, Nussenzweig MC, Richelme M, Carrier A, Malissen B (2001) Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor gamma delta + gut intraepithelial lymphocytes. Blood 98:2626–2632. doi:10.1182/blood.V98.9.2626

    CAS  PubMed  Google Scholar 

  74. Liu C, Ueno T, Kuse S, Saito F, Nitta T, Piali L, Nakano H, Kakiuchi T, Lipp M, Hollander GA, Takahama Y (2005) The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood 105:31–39. doi:10.1182/blood-2004-04-1369

    CAS  PubMed  Google Scholar 

  75. Liu C, Saito F, Liu Z et al (2006) Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 108:2531–2539. doi:10.1182/blood-2006-05-024190

    CAS  PubMed  Google Scholar 

  76. Bleul CC, Fuhlbrigge RC, Casasnovas JM et al (1996) A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 184:1101–1109

    CAS  PubMed  Google Scholar 

  77. Itoi M, Tsukamoto N, Amagai T (2006) Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus. Int Immunol 19:127–132. doi:10.1093/intimm/dxl129

    PubMed  Google Scholar 

  78. Holländer G, Gill J, Zuklys S et al (2006) Cellular and molecular events during early thymus development. Immunol Rev 209:28–46. doi:10.1111/j.0105-2896.2006.00357.x

    PubMed  Google Scholar 

  79. Aiuti A, Webb IJ, Bleul C et al (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Kim CH, Broxmeyer HE (1999) SLC/exodus2/6Ckine/TCA4 induces chemotaxis of hematopoietic progenitor cells: differential activity of ligands of CCR7, CXCR3, or CXCR4 in chemotaxis vs. suppression of progenitor proliferation. J Leukoc Biol 66:455–461

    CAS  PubMed  Google Scholar 

  81. Rosu-Myles M, Khandaker M, Wu DM et al (2000) Characterization of chemokine receptors expressed in primitive blood cells during human hematopoietic ontogeny. Stem Cells 18:374–381. doi:10.1634/stemcells.18-5-374

    CAS  PubMed  Google Scholar 

  82. Zlotoff DA, Sambandam A, Logan TD et al (2010) CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115:1897–1905. doi:10.1182/blood-2009-08-237784

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Krueger A, Willenzon S, Lyszkiewicz M et al (2010) CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood 115:1906–1912. doi:10.1182/blood-2009-07-235721

    CAS  PubMed  Google Scholar 

  84. Scimone ML, Aifantis I, Apostolou I et al (2006) A multistep adhesion cascade for lymphoid progenitor cell homing to the thymus. Proc Natl Acad Sci USA 103:7006–7011. doi:10.1073/pnas.0602024103

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Rossi FMV, Corbel SY, Merzaban JS et al (2005) Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat Immunol 6:626–634. doi:10.1038/ni1203

    CAS  PubMed  Google Scholar 

  86. Lind EFE, Prockop SES, Porritt HEH, Petrie HTH (2001) Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med 194:127–134

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Terstappen LWL, Huang SS, Picker LJL (1992) Flow cytometric assessment of human T-cell differentiation in thymus and bone marrow. Blood 79:666–677

    CAS  PubMed  Google Scholar 

  88. Flores KG, Li J, Sempowski GD et al (1999) Analysis of the human thymic perivascular space during aging. J Clin Invest 104:1031–1039. doi:10.1172/JCI7558

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Peled A, Grabovsky V, Habler L et al (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 104:1199–1211. doi:10.1172/JCI7615

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Peled A, Kollet O, Ponomaryov T et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296

    CAS  PubMed  Google Scholar 

  91. De Smedt M, Hoeboke I, Reynvoet K et al (2005) Different thresholds of notch signaling bias human precursor cells toward B-, NK-, monocytic/dendritic-, or T-cell lineage in thymus microenvironment. Blood 106:3498–3506. doi:10.1182/blood-2005-02-0496

    PubMed  Google Scholar 

  92. Weerkamp F, Baert MRM, Brugman MH et al (2006) Human thymus contains multipotent progenitors with T/B lymphoid, myeloid, and erythroid lineage potential. Blood 107:3131–3137. doi:10.1182/blood-2005-08-3412

    CAS  PubMed  Google Scholar 

  93. De Smedt M, Reynvoet K, Kerre T et al (2002) Active form of notch imposes T cell fate in human progenitor cells. J Immunol 169:3021–3029

    PubMed  Google Scholar 

  94. Dik WA, Pike-Overzet K, Weerkamp F et al (2005) New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 201:1715–1723. doi:10.1084/jem.20042524

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Kraft DL, Weissman IL, Waller EK (1993) Differentiation of CD3-4-8-human fetal thymocytes in vivo: characterization of a CD3-4+8-intermediate. J Exp Med 178:265–277

    CAS  PubMed  Google Scholar 

  96. Vanhecke D, Verhasselt B, De Smedt M et al (1997) Human thymocytes become lineage committed at an early postselection CD69+ stage, before the onset of functional maturation. J Immunol 159:5973–5983

    CAS  PubMed  Google Scholar 

  97. Vanhecke D, Leclercq G, Plum J, Vandekerckhove B (1995) Characterization of distinct stages during the differentiation of human CD69+CD3+ thymocytes and identification of thymic emigrants. J Immunol 155:1862–1872

    CAS  PubMed  Google Scholar 

  98. Plotkin J, Prockop SE, Lepique A, Petrie HT (2003) Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J Immunol 171:4521–4527

    CAS  PubMed  Google Scholar 

  99. Benz C, Heinzel K, Bleul CC (2004) Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T? Cell development. Eur J Immunol 34:3652–3663. doi:10.1002/eji.200425248

    CAS  PubMed  Google Scholar 

  100. Misslitz AA, Pabst OO, Hintzen GG et al (2004) Thymic T cell development and progenitor localization depend on CCR7. J Exp Med 200:481–491. doi:10.1084/jem.20040383

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Trampont PC, Tosello-Trampont A-C, Shen Y et al (2010) CXCR4 acts as a costimulator during thymic beta-selection. Nat Immunol 11:162–170. doi:10.1038/ni.1830

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Aiuti A, Tavian M, Cipponi A et al (1999) Expression of CXCR4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. Eur J Immunol 29:1823–1831

    CAS  PubMed  Google Scholar 

  103. Berkowitz RD, Alexander S, Bare C et al (1998) CCR5-and CXCR4-utilizing strains of human immunodeficiency virus type 1 exhibit differential tropism and pathogenesis in vivo. J Virol 72:10108–10117

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Zabel BA, Agace WW, Campbell JJ et al (1999) Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J Exp Med 190:1241–1256

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Youn BS, Kim CH, Smith FO, Broxmeyer HE (1999) TECK, an efficacious chemoattractant for human thymocytes, uses GPR-9-6/CCR9 as a specific receptor. Blood 94:2533–2536

    CAS  PubMed  Google Scholar 

  106. Mojcik CF, Salomon DR, Chang AC, Shevach EM (1995) Differential expression of integrins on human thymocyte subpopulations. Blood 86:4206–4217

    CAS  PubMed  Google Scholar 

  107. Gares SLS, Giannakopoulos NN, MacNeil DD et al (1998) During human thymic development, beta 1 integrins regulate adhesion, motility, and the outcome of RHAMM/hyaluronan engagement. J Leukoc Biol 64:781–790

    CAS  PubMed  Google Scholar 

  108. Uehara S, Grinberg A, Farber JM, Love PE (2002) A role for CCR9 in T lymphocyte development and migration. J Immunol 168:2811–2819

    CAS  PubMed  Google Scholar 

  109. Janas ML, Varano G, Gudmundsson K et al (2010) Thymic development beyond beta-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J Exp Med 207:247–261. doi:10.1084/jem.20091430

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Ehrlich LIR, Oh DY, Weissman IL, Lewis RS (2009) Differential contribution of chemotaxis and substrate restriction to segregation of immature and mature thymocytes. Immunity 31:986–998. doi:10.1016/j.immuni.2009.09.020

    CAS  PubMed  Google Scholar 

  111. Petrie HT (2003) Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat Rev Immunol 3:859–866. doi:10.1038/nri1223

    CAS  PubMed  Google Scholar 

  112. Kitchen SG, Zack JA (1997) CXCR4 expression during lymphopoiesis: implications for human immunodeficiency virus type 1 infection of the thymus. J Virol 71:6928–6934

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Swainson L, Kinet S, Manel N et al (2005) Glucose transporter 1 expression identifies a population of cycling CD4+CD8+ human thymocytes with high CXCR4-induced chemotaxis. Proc Natl Acad Sci USA 102:12867–12872. doi:10.1073/pnas.0503603102

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Suzuki GG, Nakata YY, Dan YY et al (1998) Loss of SDF-1 receptor expression during positive selection in the thymus. Int Immunol 10:1049–1056. doi:10.1093/intimm/10.8.1049

    CAS  PubMed  Google Scholar 

  115. Ueno T, Saito F, Gray DHD et al (2004) CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J Exp Med 200:493–505. doi:10.1084/jem.20040643

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Campbell JJ, Pan J, Butcher EC (1999) Cutting edge: developmental switches in chemokine responses during T cell maturation. J Immunol 163:2353–2357

    CAS  PubMed  Google Scholar 

  117. Kim CH, Pelus LM, White JR, Broxmeyer HE (1998) Differential chemotactic behavior of developing T cells in response to thymic chemokines. Blood 91:4434–4443

    CAS  PubMed  Google Scholar 

  118. Salomon DR, Mojcik CF, Chang AC et al (1994) Constitutive activation of integrin alpha 4 beta 1 defines a unique stage of human thymocyte development. J Exp Med 179:1573–1584

    CAS  PubMed  Google Scholar 

  119. Crisa LL, Cirulli VV, Ellisman MHM et al (1996) Cell adhesion and migration are regulated at distinct stages of thymic T cell development: the roles of fibronectin, VLA4, and VLA5. J Exp Med 184:215–228

    CAS  PubMed  Google Scholar 

  120. Ladi E, Schwickert TA, Chtanova T et al (2008) Thymocyte-dendritic cell interactions near sources of CCR7 ligands in the thymic cortex. J Immunol 181:7014–7023

    CAS  PubMed  Google Scholar 

  121. Le Borgne M, Ladi E, Dzhagalov I et al (2009) The impact of negative selection on thymocyte migration in the medulla. Nat Immunol 10:823–830. doi:10.1038/ni.1761

    PubMed Central  PubMed  Google Scholar 

  122. Witt CM, Raychaudhuri S, Schaefer B et al (2005) Directed migration of positively selected thymocytes visualized in real time. PLoS Biol 3:e160. doi:10.1371/journal.pbio.0030160

    PubMed Central  PubMed  Google Scholar 

  123. Nitta T, Nitta S, Lei Y et al (2009) CCR7-mediated migration of developing thymocytes to the medulla is essential for negative selection to tissue-restricted antigens. Proc Natl Acad Sci USA 106:17129–17133. doi:10.1073/pnas.0906956106

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Kurobe H, Liu C, Ueno T et al (2006) CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 24:165–177. doi:10.1016/j.immuni.2005.12.011

    CAS  PubMed  Google Scholar 

  125. Iellem A, Mariani M, Lang R et al (2001) Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J Exp Med 194:847–854

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Bousso P, Robey EA (2004) Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by two-photon microscopy. Immunity 21:349–355. doi:10.1016/j.immuni.2004.08.005

    CAS  PubMed  Google Scholar 

  127. Matloubian M, Lo CG, Cinamon G et al (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427:355–360. doi:10.1038/nature02284

    CAS  PubMed  Google Scholar 

  128. Schwab SR, Pereira JP, Matloubian M et al (2005) Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309:1735–1739. doi:10.1126/science.1113640

    CAS  PubMed  Google Scholar 

  129. Zachariah MA, Cyster JG (2010) Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328:1129–1135. doi:10.1126/science.1188222

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Shiow LR, Rosen DB, Brdicková N et al (2006) CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440:540–544. doi:10.1038/nature04606

    CAS  PubMed  Google Scholar 

  131. Mandala S, Hajdu R, Bergstrom J et al (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296:346–349. doi:10.1126/science.1070238

    CAS  PubMed  Google Scholar 

  132. Brinkmann V (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277:21453–21457. doi:10.1074/jbc.C200176200

    CAS  PubMed  Google Scholar 

  133. Brinkmann V (2009) FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158:1173–1182. doi:10.1111/j.1476-5381.2009.00451.x

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Chi H (2011) Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol Sci 32:16–24. doi:10.1016/j.tips.2010.11.002

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Mehling MM, Brinkmann VV, Antel JJ et al (2008) FTY720 therapy exerts differential effects on T cell subsets in multiple sclerosis. Neurology 71:1261–1267. doi:10.1212/01.wnl.0000327609.57688.ea

    CAS  PubMed  Google Scholar 

  136. Pappu R, Schwab SR, Cornelissen I et al (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science 316:295–298. doi:10.1126/science.1139221

    CAS  PubMed  Google Scholar 

  137. Drumea-Mirancea M (2006) Characterization of a conduit system containing laminin-5 in the human thymus: a potential transport system for small molecules. J Cell Sci 119:1396–1405. doi:10.1242/jcs.02840

    CAS  PubMed  Google Scholar 

  138. Bearman RMR, Bensch KGK, Levine GDG (1975) The normal human thymic vasculature: an ultrastructural study. Anat Rec 183:485–497. doi:10.1002/ar.1091830402

    CAS  PubMed  Google Scholar 

  139. Vianello F, Kraft P, Mok YT et al (2005) A CXCR4-dependent chemorepellent signal contributes to the emigration of mature single-positive CD4 cells from the fetal thymus. J Immunol 175:5115–5125

    CAS  PubMed  Google Scholar 

  140. Poznansky MC, Olszak IT, Foxall R et al (2000) Active movement of T cells away from a chemokine. Nat Med 6:543–548. doi:10.1038/75022

    CAS  PubMed  Google Scholar 

  141. Shiow LR, Roadcap DW, Paris K et al (2008) The actin regulator coronin 1A is mutant in a thymic egress-deficient mouse strain and in a patient with severe combined immunodeficiency. Nat Immunol 9:1307–1315. doi:10.1038/ni.1662

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Moshous D, Martin E, Carpentier W et al (2013) Whole-exome sequencing identifies coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol 131:1594e9–1603e9. doi:10.1016/j.jaci.2013.01.042

    Google Scholar 

  143. Mou F, Praskova M, Xia F et al (2012) The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes. J Exp Med 209:741–759. doi:10.1016/j.ccr.2009.09.026

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Milner JD, Holland SM (2013) The cup runneth over: lessons from the ever-expanding pool of primary immunodeficiency diseases. Nat Rev Immunol 13:635–648. doi:10.1038/nri3493

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Brian Wiest, Claudia Brockmeyer, and Nadia Kurd for critical reading of the manuscript. This work was supported by the California Institute of Regenerative Medicine clinical fellowship TG2-01164 (to JH), post-doctoral training grant T1-00007 (to HJM), and grant RM1-01732 (to EAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Halkias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halkias, J., Melichar, H.J., Taylor, K.T. et al. Tracking migration during human T cell development. Cell. Mol. Life Sci. 71, 3101–3117 (2014). https://doi.org/10.1007/s00018-014-1607-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1607-2

Keywords

Navigation