Skip to main content

Advertisement

Log in

IL-18 in inflammatory and autoimmune disease

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Inflammation serves as the first line of defense in response to tissue injury, guiding the immune system to ensure preservation of the host. The inflammatory response can be divided into a quick initial phase mediated mainly by innate immune cells including neutrophils and macrophages, followed by a late phase that is dominated by lymphocytes. Early in the new millennium, a key component of the inflammatory reaction was discovered with the identification of a number of cytosolic sensor proteins (Nod-like receptors) that assembled into a common structure, the ‘inflammasome’. This structure includes an enzyme, caspase-1, which upon activation cleaves pro-forms of cytokines leading to subsequent release of active IL-1 and IL-18. This review focuses on the role of IL-18 in inflammatory responses with emphasis on autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nakamura K, Okamura H, Nagata K, Komatsu T, Tamura T (1993) Purification of a factor which provides a costimulatory signal for gamma interferon production. Infect Immun 61:64–70

    PubMed  CAS  Google Scholar 

  2. Okamura H, Tsutsi H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K et al (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378:88–91

    PubMed  CAS  Google Scholar 

  3. Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K, Tanabe F, Konishi K, Micallef M, Fujii M et al (1996) Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol 156:4274–4279

    PubMed  CAS  Google Scholar 

  4. Rothe H, Jenkins NA, Copeland NG, Kolb H (1997) Active stage of autoimmune diabetes is associated with the expression of a novel cytokine, IGIF, which is located near Idd2. J Clin Invest 99:469–474

    PubMed  CAS  Google Scholar 

  5. Nolan KF, Greaves DR, Waldmann H (1998) The human interleukin 18 gene IL18 maps to 11q22.2-q22.3, closely linked to the DRD2 gene locus and distinct from mapped IDDM loci. Genomics 51:161–163

    PubMed  CAS  Google Scholar 

  6. Barksby HE, Lea SR, Preshaw PM, Taylor JJ (2007) The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin Exp Immunol 149:217–225

    PubMed  CAS  Google Scholar 

  7. Kato Z, Jee J, Shikano H, Mishima M, Ohki I, Ohnishi H, Li A, Hashimoto K, Matsukuma E, Omoya K et al (2003) The structure and binding mode of interleukin-18. Nat Struct Biol 10:966–971

    PubMed  CAS  Google Scholar 

  8. Stoll S, Jonuleit H, Schmitt E, Muller G, Yamauchi H, Kurimoto M, Knop J, Enk AH (1998) Production of functional IL-18 by different subtypes of murine and human dendritic cells (DC): DC-derived IL-18 enhances IL-12-dependent Th1 development. Eur J Immunol 28:3231–3239

    PubMed  CAS  Google Scholar 

  9. Stoll S, Muller G, Kurimoto M, Saloga J, Tanimoto T, Yamauchi H, Okamura H, Knop J, Enk AH (1997) Production of IL-18 (IFN-gamma-inducing factor) messenger RNA and functional protein by murine keratinocytes. J Immunol 159:298–302

    PubMed  CAS  Google Scholar 

  10. Takeuchi M, Nishizaki Y, Sano O, Ohta T, Ikeda M, Kurimoto M (1997) Immunohistochemical and immuno-electron-microscopic detection of interferon-gamma-inducing factor (“interleukin-18”) in mouse intestinal epithelial cells. Cell Tissue Res 289:499–503

    PubMed  CAS  Google Scholar 

  11. Udagawa N, Horwood NJ, Elliott J, Mackay A, Owens J, Okamura H, Kurimoto M, Chambers TJ, Martin TJ, Gillespie MT (1997) Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. J Exp Med 185:1005–1012

    PubMed  CAS  Google Scholar 

  12. Lacy P, Stow JL (2011) Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118:9–18

    PubMed  CAS  Google Scholar 

  13. Gu Y, Kuida K, Tsutsui H, Ku G, Hsiao K, Fleming MA, Hayashi N, Higashino K, Okamura H, Nakanishi K et al (1997) Activation of interferon-gamma inducing factor mediated by interleukin-1beta converting enzyme. Science 275:206–209

    PubMed  CAS  Google Scholar 

  14. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    PubMed  CAS  Google Scholar 

  15. Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC (2003) Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol 171:6154–6163

    PubMed  CAS  Google Scholar 

  16. Stutz A, Golenbock DT, Latz E (2009) Inflammasomes: too big to miss. J Clin Invest 119:3502–3511

    PubMed  CAS  Google Scholar 

  17. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–325

    PubMed  CAS  Google Scholar 

  18. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604

    PubMed  CAS  Google Scholar 

  19. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ, Guthrie EH, Pickles RJ, Ting JP (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565

    PubMed  CAS  Google Scholar 

  20. Duncan JA, Gao X, Huang MT, O’Connor BP, Thomas CE, Willingham SB, Bergstralh DT, Jarvis GA, Sparling PF, Ting JP (2009) Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol 182:6460–6469

    PubMed  CAS  Google Scholar 

  21. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436

    PubMed  CAS  Google Scholar 

  22. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    PubMed  CAS  Google Scholar 

  23. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107

    PubMed  CAS  Google Scholar 

  24. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    PubMed  CAS  Google Scholar 

  25. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    PubMed  CAS  Google Scholar 

  26. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    PubMed  CAS  Google Scholar 

  27. Filippini A, Taffs RE, Sitkovsky MV (1990) Extracellular ATP in T-lymphocyte activation: possible role in effector functions. Proc Natl Acad Sci USA 87:8267–8271

    PubMed  CAS  Google Scholar 

  28. Ferrari D, Chiozzi P, Falzoni S, Hanau S, Di Virgilio F (1997) Purinergic modulation of interleukin-1 beta release from microglial cells stimulated with bacterial endotoxin. J Exp Med 185:579–582

    PubMed  CAS  Google Scholar 

  29. Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105:8067–8072

    PubMed  CAS  Google Scholar 

  30. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  31. Dubyak GR (2012) P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell Microbiol 14:1697–1706

    PubMed  CAS  Google Scholar 

  32. Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA (2000) ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J Immunol 165:4615–4623

    PubMed  CAS  Google Scholar 

  33. Mehta VB, Hart J, Wewers MD (2001) ATP-stimulated release of interleukin (IL)-1beta and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J Biol Chem 276:3820–3826

    PubMed  CAS  Google Scholar 

  34. Sluyter R, Dalitz JG, Wiley JS (2004) P2X7 receptor polymorphism impairs extracellular adenosine 5′-triphosphate-induced interleukin-18 release from human monocytes. Genes Immun 5:588–591

    PubMed  CAS  Google Scholar 

  35. Tsutsui H, Kayagaki N, Kuida K, Nakano H, Hayashi N, Takeda K, Matsui K, Kashiwamura S, Hada T, Akira S et al (1999) Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity 11:359–367

    PubMed  CAS  Google Scholar 

  36. Bossaller L, Chiang PI, Schmidt-Lauber C, Ganesan S, Kaiser WJ, Rathinam VA, Mocarski ES, Subramanian D, Green DR, Silverman N et al (2012) Cutting edge: FAS (CD95) mediates noncanonical IL-1beta and IL-18 maturation via caspase-8 in an RIP3-independent manner. J Immunol 189:5508–5512

    PubMed  CAS  Google Scholar 

  37. Akita K, Ohtsuki T, Nukada Y, Tanimoto T, Namba M, Okura T, Takakura-Yamamoto R, Torigoe K, Gu Y, Su MS et al (1997) Involvement of caspase-1 and caspase-3 in the production and processing of mature human interleukin 18 in monocytic THP.1 cells. J Biol Chem 272:26595–26603

    PubMed  CAS  Google Scholar 

  38. Omoto Y, Yamanaka K, Tokime K, Kitano S, Kakeda M, Akeda T, Kurokawa I, Gabazza EC, Tsutsui H, Katayama N et al (2010) Granzyme B is a novel interleukin-18 converting enzyme. J Dermatol Sci 59:129–135

    PubMed  CAS  Google Scholar 

  39. Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A, Hanzawa K, Kumagai K, Okamura H, Takada H (2001) Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol 167:6568–6575

    PubMed  CAS  Google Scholar 

  40. Omoto Y, Tokime K, Yamanaka K, Habe K, Morioka T, Kurokawa I, Tsutsui H, Yamanishi K, Nakanishi K, Mizutani H (2006) Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment. J Immunol 177:8315–8319

    PubMed  CAS  Google Scholar 

  41. Banerjee S, Bond JS (2008) Prointerleukin-18 is activated by meprin beta in vitro and in vivo in intestinal inflammation. J Biol Chem 283:31371–31377

    PubMed  CAS  Google Scholar 

  42. Torigoe K, Ushio S, Okura T, Kobayashi S, Taniai M, Kunikata T, Murakami T, Sanou O, Kojima H, Fujii M et al (1997) Purification and characterization of the human interleukin-18 receptor. J Biol Chem 272:25737–25742

    PubMed  CAS  Google Scholar 

  43. Hoshino K, Tsutsui H, Kawai T, Takeda K, Nakanishi K, Takeda Y, Akira S (1999) Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J Immunol 162:5041–5044

    PubMed  CAS  Google Scholar 

  44. Muzio M, Ni J, Feng P, Dixit VM (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278:1612–1615

    PubMed  CAS  Google Scholar 

  45. Thomassen E, Bird TA, Renshaw BR, Kennedy MK, Sims JE (1998) Binding of interleukin-18 to the interleukin-1 receptor homologous receptor IL-1Rrp1 leads to activation of signaling pathways similar to those used by interleukin-1. J Interf Cytokine Res 18:1077–1088

    CAS  Google Scholar 

  46. Born TL, Thomassen E, Bird TA, Sims JE (1998) Cloning of a novel receptor subunit, AcPL, required for interleukin-18 signaling. J Biol Chem 273:29445–29450

    PubMed  CAS  Google Scholar 

  47. Cheung H, Chen NJ, Cao Z, Ono N, Ohashi PS, Yeh WC (2005) Accessory protein-like is essential for IL-18-mediated signaling. J Immunol 174:5351–5357

    PubMed  CAS  Google Scholar 

  48. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S (1998) Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9:143–150

    PubMed  CAS  Google Scholar 

  49. Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258

    PubMed  CAS  Google Scholar 

  50. Suzuki N, Chen NJ, Millar DG, Suzuki S, Horacek T, Hara H, Bouchard D, Nakanishi K, Penninger JM, Ohashi PS et al (2003) IL-1 receptor-associated kinase 4 is essential for IL-18-mediated NK and Th1 cell responses. J Immunol 170:4031–4035

    PubMed  CAS  Google Scholar 

  51. Guo F, Wu S (2000) Antisense IRAK-1 oligonucleotide blocks activation of NF-kappa B and AP-1 induced by IL-18. Immunopharmacology 49:241–246

    PubMed  CAS  Google Scholar 

  52. Wald D, Commane M, Stark GR, Li X (2001) IRAK and TAK1 are required for IL-18-mediated signaling. Eur J Immunol 31:3747–3754

    PubMed  CAS  Google Scholar 

  53. Kojima H, Takeuchi M, Ohta T, Nishida Y, Arai N, Ikeda M, Ikegami H, Kurimoto M (1998) Interleukin-18 activates the IRAK-TRAF6 pathway in mouse EL-4 cells. Biochem Biophys Res Commun 244:183–186

    PubMed  CAS  Google Scholar 

  54. Kanakaraj P, Ngo K, Wu Y, Angulo A, Ghazal P, Harris CA, Siekierka JJ, Peterson PA, Fung-Leung WP (1999) Defective interleukin (IL)-18-mediated natural killer and T helper cell type 1 responses in IL-1 receptor-associated kinase (IRAK)-deficient mice. J Exp Med 189:1129–1138

    PubMed  CAS  Google Scholar 

  55. Malinin NL, Boldin MP, Kovalenko AV, Wallach D (1997) MAP3K-related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature 385:540–544

    PubMed  CAS  Google Scholar 

  56. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kappaB signaling pathways. Nat Immunol 12:695–708

    PubMed  CAS  Google Scholar 

  57. Kalina U, Kauschat D, Koyama N, Nuernberger H, Ballas K, Koschmieder S, Bug G, Hofmann WK, Hoelzer D, Ottmann OG (2000) IL-18 activates STAT3 in the natural killer cell line 92, augments cytotoxic activity, and mediates IFN-gamma production by the stress kinase p38 and by the extracellular regulated kinases p44erk-1 and p42erk-21. J Immunol 165:1307–1313

    PubMed  CAS  Google Scholar 

  58. Wyman TH, Dinarello CA, Banerjee A, Gamboni-Robertson F, Hiester AA, England KM, Kelher M, Silliman CC (2002) Physiological levels of interleukin-18 stimulate multiple neutrophil functions through p38 MAP kinase activation. J Leukoc Biol 72:401–409

    PubMed  CAS  Google Scholar 

  59. Fortin CF, Ear T, McDonald PP (2009) Autocrine role of endogenous interleukin-18 on inflammatory cytokine generation by human neutrophils. FASEB J 23:194–203

    PubMed  CAS  Google Scholar 

  60. Shimoda K, Tsutsui H, Aoki K, Kato K, Matsuda T, Numata A, Takase K, Yamamoto T, Nukina H, Hoshino T et al (2002) Partial impairment of interleukin-12 (IL-12) and IL-18 signaling in Tyk2-deficient mice. Blood 99:2094–2099

    PubMed  CAS  Google Scholar 

  61. Chandrasekar B, Patel DN, Mummidi S, Kim JW, Clark RA, Valente AJ (2008) Interleukin-18 suppresses adiponectin expression in 3T3-L1 adipocytes via a novel signal transduction pathway involving ERK1/2-dependent NFATc4 phosphorylation. J Biol Chem 283:4200–4209

    PubMed  CAS  Google Scholar 

  62. Novick D, Kim SH, Fantuzzi G, Reznikov LL, Dinarello CA, Rubinstein M (1999) Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity 10:127–136

    PubMed  CAS  Google Scholar 

  63. Aizawa Y, Akita K, Taniai M, Torigoe K, Mori T, Nishida Y, Ushio S, Nukada Y, Tanimoto T, Ikegami H et al (1999) Cloning and expression of interleukin-18 binding protein. FEBS Lett 445:338–342

    PubMed  CAS  Google Scholar 

  64. Kim SH, Eisenstein M, Reznikov L, Fantuzzi G, Novick D, Rubinstein M, Dinarello CA (2000) Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci USA 97:1190–1195

    PubMed  CAS  Google Scholar 

  65. Paulukat J, Bosmann M, Nold M, Garkisch S, Kampfer H, Frank S, Raedle J, Zeuzem S, Pfeilschifter J, Muhl H (2001) Expression and release of IL-18 binding protein in response to IFN-gamma. J Immunol 167:7038–7043

    PubMed  CAS  Google Scholar 

  66. Xiang Y, Moss B (1999) IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proc Natl Acad Sci USA 96:11537–11542

    PubMed  CAS  Google Scholar 

  67. Smith VP, Bryant NA, Alcami A (2000) Ectromelia, vaccinia and cowpox viruses encode secreted interleukin-18-binding proteins. J Gen Virol 81:1223–1230

    PubMed  CAS  Google Scholar 

  68. Krumm B, Meng X, Wang Z, Xiang Y, Deng J (2012) A unique bivalent binding and inhibition mechanism by the yatapoxvirus interleukin 18 binding protein. PLoS Pathog 8:e1002876

    PubMed  CAS  Google Scholar 

  69. Banda NK, Vondracek A, Kraus D, Dinarello CA, Kim SH, Bendele A, Senaldi G, Arend WP (2003) Mechanisms of inhibition of collagen-induced arthritis by murine IL-18 binding protein. J Immunol 170:2100–2105

    PubMed  CAS  Google Scholar 

  70. Plater-Zyberk C, Joosten LA, Helsen MM, Sattonnet-Roche P, Siegfried C, Alouani S, van De Loo FA, Graber P, Aloni S, Cirillo R et al (2001) Therapeutic effect of neutralizing endogenous IL-18 activity in the collagen-induced model of arthritis. J Clin Invest 108:1825–1832

    PubMed  CAS  Google Scholar 

  71. Plitz T, Saint-Mezard P, Satho M, Herren S, Waltzinger C, de Carvalho Bittencourt M, Kosco-Vilbois MH, Chvatchko Y (2003) IL-18 binding protein protects against contact hypersensitivity. J Immunol 171:1164–1171

    Google Scholar 

  72. Faggioni R, Cattley RC, Guo J, Flores S, Brown H, Qi M, Yin S, Hill D, Scully S, Chen C et al (2001) IL-18-binding protein protects against lipopolysaccharide-induced lethality and prevents the development of Fas/Fas ligand-mediated models of liver disease in mice. J Immunol 167:5913–5920

    PubMed  CAS  Google Scholar 

  73. Novick D, Schwartsburd B, Pinkus R, Suissa D, Belzer I, Sthoeger Z, Keane WF, Chvatchko Y, Kim SH, Fantuzzi G et al (2001) A novel IL-18BP ELISA shows elevated serum IL-18BP in sepsis and extensive decrease of free IL-18. Cytokine 14:334–342

    PubMed  CAS  Google Scholar 

  74. Sarvetnick N (1997) IFN-gamma, IGIF, and IDDM. J Clin Invest 99:371–372

    PubMed  CAS  Google Scholar 

  75. Kretowski A, Mironczuk K, Karpinska A, Bojaryn U, Kinalski M, Puchalski Z, Kinalska I (2002) Interleukin-18 promoter polymorphisms in type 1 diabetes. Diabetes 51:3347–3349

    PubMed  CAS  Google Scholar 

  76. Ide A, Kawasaki E, Abiru N, Sun F, Kobayashi M, Fukushima T, Takahashi R, Kuwahara H, Kita A, Oshima K et al (2004) Association between IL-18 gene promoter polymorphisms and CTLA-4 gene 49A/G polymorphism in Japanese patients with type 1 diabetes. J Autoimmun 22:73–78

    PubMed  CAS  Google Scholar 

  77. Saleh NM, Raj SM, Smyth DJ, Wallace C, Howson JM, Bell L, Walker NM, Stevens HE, Todd JA (2011) Genetic association analyses of atopic illness and proinflammatory cytokine genes with type 1 diabetes. Diabetes Metab Res Rev 27:838–843

    PubMed  CAS  Google Scholar 

  78. Nolsoe RL, Pociot F, Novick D, Rubinstein M, Kim SH, Dinarello CA, Mandrup-Poulsen T (2003) Mutation scan of a type 1 diabetes candidate gene: the human interleukin-18 binding protein gene. Ann NY Acad Sci 1005:332–339

    PubMed  CAS  Google Scholar 

  79. Nicoletti F, Conget I, Di Marco R, Speciale AM, Morinigo R, Bendtzen K, Gomis R (2001) Serum levels of the interferon-gamma-inducing cytokine interleukin-18 are increased in individuals at high risk of developing type I diabetes. Diabetologia 44:309–311

    PubMed  CAS  Google Scholar 

  80. Katakami N, Kaneto H, Matsuhisa M, Yoshiuchi K, Kato K, Yamamoto K, Umayahara Y, Kosugi K, Hori M, Yamasaki Y (2007) Serum interleukin-18 levels are increased and closely associated with various soluble adhesion molecule levels in type 1 diabetic patients. Diabetes Care 30:159–161

    PubMed  CAS  Google Scholar 

  81. Altinova AE, Yetkin I, Akbay E, Bukan N, Arslan M (2008) Serum IL-18 levels in patients with type 1 diabetes: relations to metabolic control and microvascular complications. Cytokine 42:217–221

    PubMed  CAS  Google Scholar 

  82. Mahmoud RA, el-Ezz SA, Hegazy AS (2004) Increased serum levels of interleukin-18 in patients with diabetic nephropathy. Ital J Biochem 53:73–81

    Google Scholar 

  83. Dong G, Liang L, Fu J, Zou C (2007) Serum interleukin-18 levels are raised in diabetic ketoacidosis in Chinese children with type 1 diabetes mellitus. Indian Pediatr 44:732–736

    PubMed  Google Scholar 

  84. Kuryliszyn-Moskal A, Dubicki A, Zarzycki W, Zonnenberg A, Gorska M (2011) Microvascular abnormalities in capillaroscopy correlate with higher serum IL-18 and sE-selectin levels in patients with type 1 diabetes complicated by microangiopathy. Folia Histochem Cytobiol 49:104–110

    PubMed  CAS  Google Scholar 

  85. Rothe H, Hibino T, Itoh Y, Kolb H, Martin S (1997) Systemic production of interferon-gamma inducing factor (IGIF) versus local IFN-gamma expression involved in the development of Th1 insulitis in NOD mice. J Autoimmun 10:251–256

    PubMed  CAS  Google Scholar 

  86. Rothe H, Hausmann A, Casteels K, Okamura H, Kurimoto M, Burkart V, Mathieu C, Kolb H (1999) IL-18 inhibits diabetes development in nonobese diabetic mice by counterregulation of Th1-dependent destructive insulitis. J Immunol 163:1230–1236

    PubMed  CAS  Google Scholar 

  87. Oikawa Y, Shimada A, Kasuga A, Morimoto J, Osaki T, Tahara H, Miyazaki T, Tashiro F, Yamato E, Miyazaki J et al (2003) Systemic administration of IL-18 promotes diabetes development in young nonobese diabetic mice. J Immunol 171:5865–5875

    PubMed  CAS  Google Scholar 

  88. Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H (2001) Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev 12:53–72

    PubMed  CAS  Google Scholar 

  89. Krook H, Wallstrom J, Sandler S (1999) Function of rat pancreatic islets exposed to interleukin-18 in vitro. Autoimmunity 29:263–267

    PubMed  CAS  Google Scholar 

  90. Hong TP, Andersen NA, Nielsen K, Karlsen AE, Fantuzzi G, Eizirik DL, Dinarello CA, Mandrup-Poulsen T (2000) Interleukin-18 mRNA, but not interleukin-18 receptor mRNA, is constitutively expressed in islet beta-cells and up-regulated by interferon-gamma. Eur Cytokine Netw 11:193–205

    PubMed  CAS  Google Scholar 

  91. Frigerio S, Hollander GA, Zumsteg U (2002) Functional IL-18 Is produced by primary pancreatic mouse islets and NIT-1 beta cells and participates in the progression towards destructive insulitis. Horm Res 57:94–104

    PubMed  CAS  Google Scholar 

  92. Schott WH, Haskell BD, Tse HM, Milton MJ, Piganelli JD, Choisy-Rossi CM, Reifsnyder PC, Chervonsky AV, Leiter EH (2004) Caspase-1 is not required for type 1 diabetes in the NOD mouse. Diabetes 53:99–104

    PubMed  CAS  Google Scholar 

  93. Marleau AM, Sarvetnick NE (2011) IL-18 is required for self-reactive T cell expansion in NOD mice. J Autoimmun 36:263–277

    PubMed  CAS  Google Scholar 

  94. Zaccone P, Phillips J, Conget I, Cooke A, Nicoletti F (2005) IL-18 binding protein fusion construct delays the development of diabetes in adoptive transfer and cyclophosphamide-induced diabetes in NOD mouse. Clin Immunol 115:74–79

    PubMed  CAS  Google Scholar 

  95. Furlan R, Martino G, Galbiati F, Poliani PL, Smiroldo S, Bergami A, Desina G, Comi G, Flavell R, Su MS et al (1999) Caspase-1 regulates the inflammatory process leading to autoimmune demyelination. J Immunol 163:2403–2409

    PubMed  CAS  Google Scholar 

  96. Shi FD, Takeda K, Akira S, Sarvetnick N, Ljunggren HG (2000) IL-18 directs autoreactive T cells and promotes autodestruction in the central nervous system via induction of IFN-gamma by NK cells. J Immunol 165:3099–3104

    PubMed  CAS  Google Scholar 

  97. Gutcher I, Urich E, Wolter K, Prinz M, Becher B (2006) Interleukin 18-independent engagement of interleukin 18 receptor-alpha is required for autoimmune inflammation. Nat Immunol 7:946–953

    PubMed  CAS  Google Scholar 

  98. Lewis EC, Dinarello CA (2006) Responses of IL-18- and IL-18 receptor-deficient pancreatic islets with convergence of positive and negative signals for the IL-18 receptor. Proc Natl Acad Sci USA 103:16852–16857

    PubMed  CAS  Google Scholar 

  99. Nold-Petry CA, Nold MF, Nielsen JW, Bustamante A, Zepp JA, Storm KA, Hong JW, Kim SH, Dinarello CA (2009) Increased cytokine production in interleukin-18 receptor alpha-deficient cells is associated with dysregulation of suppressors of cytokine signaling. J Biol Chem 284:25900–25911

    PubMed  CAS  Google Scholar 

  100. Gillett A, Thessen Hedreul M, Khademi M, Espinosa A, Beyeen AD, Jagodic M, Kockum I, Harris RA, Olsson T (2010) Interleukin 18 receptor 1 expression distinguishes patients with multiple sclerosis. Mult Scler 16:1056–1065

    Google Scholar 

  101. Millward JM, Lobner M, Wheeler RD, Owens T (2010) Inflammation in the central nervous system and Th17 responses are inhibited by IFN-gamma-Induced IL-18 binding protein. J Immunol 185:2458–2466

    PubMed  CAS  Google Scholar 

  102. Nicoletti F, Di Marco R, Mangano K, Patti F, Reggio E, Nicoletti A, Bendtzen K, Reggio A (2001) Increased serum levels of interleukin-18 in patients with multiple sclerosis. Neurology 57:342–344

    PubMed  CAS  Google Scholar 

  103. Losy J, Niezgoda A (2001) IL-18 in patients with multiple sclerosis. Acta Neurol Scand 104:171–173

    PubMed  CAS  Google Scholar 

  104. Franciotta D, Martino G, Zardini E, Furlan R, Bergamaschi R, Gironi M, Bergami A, Angelini G, De Benedetti F, Pignatti P et al (2002) Caspase-1 levels in biological fluids from patients with multiple sclerosis and from patients with other neurological and non-neurological diseases. Eur Cytokine Netw 13:99–103

    PubMed  CAS  Google Scholar 

  105. Huang WX, Huang P, Hillert J (2004) Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult Scler 10:482–487

    PubMed  CAS  Google Scholar 

  106. Karni A, Koldzic DN, Bharanidharan P, Khoury SJ, Weiner HL (2002) IL-18 is linked to raised IFN-gamma in multiple sclerosis and is induced by activated CD4(+) T cells via CD40-CD40 ligand interactions. J Neuroimmunol 125:134–140

    PubMed  CAS  Google Scholar 

  107. Drachman DB (1994) Myasthenia gravis. N Engl J Med 330:1797–1810

    PubMed  CAS  Google Scholar 

  108. Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, Van Kaer L, Ljunggren HG (2000) Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 1:245–251

    PubMed  CAS  Google Scholar 

  109. Souroujon MC, Maiti PK, Feferman T, Im SH, Raveh L, Fuchs S (2003) Suppression of myasthenia gravis by antigen-specific mucosal tolerance and modulation of cytokines and costimulatory factors. Ann NY Acad Sci 998:533–536

    PubMed  CAS  Google Scholar 

  110. Aricha R, Feferman T, Fuchs S, Souroujon MC (2008) Ex vivo generated regulatory T cells modulate experimental autoimmune myasthenia gravis. J Immunol 180:2132–2139

    PubMed  CAS  Google Scholar 

  111. Jander S, Stoll G (2002) Increased serum levels of the interferon-gamma-inducing cytokine interleukin-18 in myasthenia gravis. Neurology 59:287–289

    PubMed  Google Scholar 

  112. Volin MV, Koch AE (2011) Interleukin-18: a mediator of inflammation and angiogenesis in rheumatoid arthritis. J Interferon Cytokine Res 31:745–751

    PubMed  CAS  Google Scholar 

  113. Gracie JA, Forsey RJ, Chan WL, Gilmour A, Leung BP, Greer MR, Kennedy K, Carter R, Wei XQ, Xu D et al (1999) A proinflammatory role for IL-18 in rheumatoid arthritis. J Clin Invest 104:1393–1401

    PubMed  CAS  Google Scholar 

  114. Wei XQ, Leung BP, Arthur HM, McInnes IB, Liew FY (2001) Reduced incidence and severity of collagen-induced arthritis in mice lacking IL-18. J Immunol 166:517–521

    PubMed  CAS  Google Scholar 

  115. Huber LC, Distler O, Tarner I, Gay RE, Gay S, Pap T (2006) Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology (Oxford) 45:669–675

    CAS  Google Scholar 

  116. Morel JC, Park CC, Zhu K, Kumar P, Ruth JH, Koch AE (2002) Signal transduction pathways involved in rheumatoid arthritis synovial fibroblast interleukin-18-induced vascular cell adhesion molecule-1 expression. J Biol Chem 277:34679–34691

    PubMed  CAS  Google Scholar 

  117. Morel JC, Park CC, Kumar P, Koch AE (2001) Interleukin-18 induces rheumatoid arthritis synovial fibroblast CXC chemokine production through NFkappaB activation. Lab Invest 81:1371–1383

    PubMed  CAS  Google Scholar 

  118. Park CC, Morel JC, Amin MA, Connors MA, Harlow LA, Koch AE (2001) Evidence of IL-18 as a novel angiogenic mediator. J Immunol 167:1644–1653

    PubMed  CAS  Google Scholar 

  119. Amin MA, Mansfield PJ, Pakozdi A, Campbell PL, Ahmed S, Martinez RJ, Koch AE (2007) Interleukin-18 induces angiogenic factors in rheumatoid arthritis synovial tissue fibroblasts via distinct signaling pathways. Arthr Rheum 56:1787–1797

    CAS  Google Scholar 

  120. Naik SM, Cannon G, Burbach GJ, Singh SR, Swerlick RA, Wilcox JN, Ansel JC, Caughman SW (1999) Human keratinocytes constitutively express interleukin-18 and secrete biologically active interleukin-18 after treatment with pro-inflammatory mediators and dinitrochlorobenzene. J Invest Dermatol 113:766–772

    PubMed  CAS  Google Scholar 

  121. Ohta Y, Hamada Y, Katsuoka K (2001) Expression of IL-18 in psoriasis. Arch Dermatol Res 293:334–342

    PubMed  CAS  Google Scholar 

  122. Johansen C, Moeller K, Kragballe K, Iversen L (2007) The activity of caspase-1 is increased in lesional psoriatic epidermis. J Invest Dermatol 127:2857–2864

    PubMed  CAS  Google Scholar 

  123. Companjen A, van der Wel L, van der Fits L, Laman J, Prens E (2004) Elevated interleukin-18 protein expression in early active and progressive plaque-type psoriatic lesions. Eur Cytokine Netw 15:210–216

    PubMed  CAS  Google Scholar 

  124. Gangemi S, Merendino RA, Guarneri F, Minciullo PL, DiLorenzo G, Pacor M, Cannavo SP (2003) Serum levels of interleukin-18 and s-ICAM-1 in patients affected by psoriasis: preliminary considerations. J Eur Acad Dermatol Venereol 17:42–46

    PubMed  CAS  Google Scholar 

  125. Gutzmer R, Langer K, Mommert S, Wittmann M, Kapp A, Werfel T (2003) Human dendritic cells express the IL-18R and are chemoattracted to IL-18. J Immunol 171:6363–6371

    PubMed  CAS  Google Scholar 

  126. Cho D, Seung Kang J, Hoon Park J, Kim YI, Hahm E, Lee J, Yang Y, Jeon J, Song H, Park H et al (2002) The enhanced IL-18 production by UVB irradiation requires ROI and AP-1 signaling in human keratinocyte cell line (HaCaT). Biochem Biophys Res Commun 298:289–295

    Google Scholar 

  127. Wittmann M, Doble R, Bachmann M, Pfeilschifter J, Werfel T, Muhl H (2012) IL-27 regulates IL-18 binding protein in skin resident cells. PLoS ONE 7:e38751

    PubMed  CAS  Google Scholar 

  128. Wong CK, Li EK, Ho CY, Lam CW (2000) Elevation of plasma interleukin-18 concentration is correlated with disease activity in systemic lupus erythematosus. Rheumatology (Oxford) 39:1078–1081

    CAS  Google Scholar 

  129. Wong CK, Ho CY, Li EK, Tam LS, Lam CW (2002) Elevated production of interleukin-18 is associated with renal disease in patients with systemic lupus erythematosus. Clin Exp Immunol 130:345–351

    PubMed  CAS  Google Scholar 

  130. Park MC, Park YB, Lee SK (2004) Elevated interleukin-18 levels correlated with disease activity in systemic lupus erythematosus. Clin Rheumatol 23:225–229

    PubMed  Google Scholar 

  131. Neumann D, Del Giudice E, Ciaramella A, Boraschi D, Bossu P (2001) Lymphocytes from autoimmune MRL lpr/lpr mice are hyperresponsive to IL-18 and overexpress the IL-18 receptor accessory chain. J Immunol 166:3757–3762

    PubMed  CAS  Google Scholar 

  132. Bossu P, Neumann D, Del Giudice E, Ciaramella A, Gloaguen I, Fantuzzi G, Dinarello CA, Di Carlo E, Musiani P, Meroni PL et al (2003) IL-18 cDNA vaccination protects mice from spontaneous lupus-like autoimmune disease. Proc Natl Acad Sci USA 100:14181–14186

    PubMed  CAS  Google Scholar 

  133. Favilli F, Anzilotti C, Martinelli L, Quattroni P, De Martino S, Pratesi F, Neumann D, Beermann S, Novick D, Dinarello CA et al (2009) IL-18 activity in systemic lupus erythematosus. Ann NY Acad Sci 1173:301–309

    PubMed  CAS  Google Scholar 

  134. Bieber T (2008) Atopic dermatitis. N Engl J Med 358:1483–1494

    PubMed  CAS  Google Scholar 

  135. Tanaka T, Tsutsui H, Yoshimoto T, Kotani M, Matsumoto M, Fujita A, Wang W, Higa S, Koshimoto T, Nakanishi K et al (2001) Interleukin-18 is elevated in the sera from patients with atopic dermatitis and from atopic dermatitis model mice, NC/Nga. Int Arch Allergy Immunol 125:236–240

    PubMed  CAS  Google Scholar 

  136. Buentke E, Heffler LC, Wallin RP, Lofman C, Ljunggren HG, Scheynius A (2001) The allergenic yeast Malassezia furfur induces maturation of human dendritic cells. Clin Exp Allergy 31:1583–1593

    PubMed  CAS  Google Scholar 

  137. Hoshino T, Yagita H, Ortaldo JR, Wiltrout RH, Young HA (2000) In vivo administration of IL-18 can induce IgE production through Th2 cytokine induction and up-regulation of CD40 ligand (CD154) expression on CD4+ T cells. Eur J Immunol 30:1998–2006

    PubMed  CAS  Google Scholar 

  138. Enoksson SL, Grasset EK, Hagglof T, Mattsson N, Kaiser Y, Gabrielsson S, McGaha TL, Scheynius A, Karlsson MC (2011) The inflammatory cytokine IL-18 induces self-reactive innate antibody responses regulated by natural killer T cells. Proc Natl Acad Sci USA 108:E1399–E1407

    PubMed  CAS  Google Scholar 

  139. Coquet JM, Kyparissoudis K, Pellicci DG, Besra G, Berzins SP, Smyth MJ, Godfrey DI (2007) IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol 178:2827–2834

    PubMed  CAS  Google Scholar 

  140. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, Hwu P, Shaffer DJ, Akilesh S, Roopenian DC et al (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173:5361–5371

    PubMed  CAS  Google Scholar 

  141. Wu L, Van Kaer L (2009) Natural killer T cells and autoimmune disease. Curr Mol Med 9:4–14

    PubMed  CAS  Google Scholar 

  142. Lind SM, Kuylenstierna C, Moll M, D Jordö E, Winqvist O, Lundeberg L, Karlsson MA, T Linder M, Johansson C, Scheynius A et al (2009) IL-18 skews the invariant NKT-cell population via autoreactive activation in atopic eczema. Eur J Immunol 39:2293–2301

  143. Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12:204–212

    PubMed  CAS  Google Scholar 

  144. Seta Y, Kanda T, Tanaka T, Arai M, Sekiguchi K, Yokoyama T, Kurimoto M, Tamura J, Kurabayashi M (2000) Interleukin 18 in acute myocardial infarction. Heart 84:668

    PubMed  CAS  Google Scholar 

  145. Mallat Z, Corbaz A, Scoazec A, Besnard S, Leseche G, Chvatchko Y, Tedgui A (2001) Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 104:1598–1603

    PubMed  CAS  Google Scholar 

  146. Mallat Z, Corbaz A, Scoazec A, Graber P, Alouani S, Esposito B, Humbert Y, Chvatchko Y, Tedgui A (2001) Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. Circ Res 89:E41–E45

    PubMed  CAS  Google Scholar 

  147. Whitman SC, Ravisankar P, Daugherty A (2002) Interleukin-18 enhances atherosclerosis in apolipoprotein E(−/−) mice through release of interferon-gamma. Circ Res 90:E34–E38

    PubMed  CAS  Google Scholar 

  148. Elhage R, Jawien J, Rudling M, Ljunggren HG, Takeda K, Akira S, Bayard F, Hansson GK (2003) Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. Cardiovasc Res 59:234–240

    PubMed  CAS  Google Scholar 

  149. Tenger C, Sundborger A, Jawien J, Zhou X (2005) IL-18 accelerates atherosclerosis accompanied by elevation of IFN-gamma and CXCL16 expression independently of T cells. Arterioscler Thromb Vasc Biol 25:791–796

    PubMed  CAS  Google Scholar 

  150. Sahar S, Dwarakanath RS, Reddy MA, Lanting L, Todorov I, Natarajan R (2005) Angiotensin II enhances interleukin-18 mediated inflammatory gene expression in vascular smooth muscle cells: a novel cross-talk in the pathogenesis of atherosclerosis. Circ Res 96:1064–1071

    PubMed  CAS  Google Scholar 

  151. Blankenberg S, Tiret L, Bickel C, Peetz D, Cambien F, Meyer J, Rupprecht HJ, AtheroGene I (2002) Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. Circulation 106:24–30

    PubMed  CAS  Google Scholar 

  152. Chapman CM, McQuillan BM, Beilby JP, Thompson PL, Hung J (2006) Interleukin-18 levels are not associated with subclinical carotid atherosclerosis in a community population. The Perth Carotid Ultrasound Disease Assessment Study (CUDAS). Atherosclerosis 189:414–419

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Swedish Research Council, Torsten Söderberg foundation, Swedish Cancer foundation, King V’s 80 year foundation, Swedish Rheumatism association, Theme Centre for Cardiovascular Research, Karolinska Instituet, Swedish Society for Medical Research (SSMF), O.E. and Edla Johanssons Foundation, Center for Allergy Research at Karolinska Institutet (CfA), Svenska Sällskapet för Medicinsk Forskning and Olle Engkvist Foundations for research grant support. T.H. is supported by a PhD fellowship from Karolinska Institutet.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saikiran K. Sedimbi or Mikael C. I. Karlsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedimbi, S.K., Hägglöf, T. & Karlsson, M.C.I. IL-18 in inflammatory and autoimmune disease. Cell. Mol. Life Sci. 70, 4795–4808 (2013). https://doi.org/10.1007/s00018-013-1425-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1425-y

Keywords

Navigation