Skip to main content
Log in

Role of p21-activated kinases in cardiovascular development and function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

p21-activated kinases (Paks) are a group of six serine/threonine kinases (Pak1-6) that are involved in a variety of biological processes. Recently, Paks, more specifically Pak1, -2, and -4, have been shown to play important roles in cardiovascular development and function in a range of model organisms including zebrafish and mice. These functions include proper morphogenesis and conductance of the heart, cardiac contractility, and development and integrity of the vasculature. The mechanisms underlying these effects are not fully known, but they likely differ among the various Pak isoforms and include both kinase-dependent and -independent functions. In this review, we discuss aspects of Pak function relevant to cardiovascular biology as well as potential therapeutic implications of small-molecule Pak inhibitors in cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANP:

Atrial natriuretic peptide

Cko:

Conditional knock-out

Erk:

Extracellular-regulated kinase

GAP:

Guanine-nucleotide activating proteins

GDI:

Guanine-nucleotide dissociation inhibitor

GEF:

Guanine-nucleotide exchange factor

LIMK:

LIM kinase

MAPK:

Mitogen-activated protein kinase

MLC:

Myosin light chain

Pak:

p21-Activated kinase

PDK:

Phosphoinositide-dependent kinase

References

  1. Ai X, Jiang A, Ke Y, Solaro RJ, Pogwizd SM (2011) Enhanced activation of p21-activated kinase 1 in heart failure contributes to dephosphorylation of connexin 43. Cardiovasc Res 92:106–114

    Article  PubMed  CAS  Google Scholar 

  2. Arias-Romero LE, Chernoff J (2008) A tale of two Paks. Biol Cell 100:97–108

    Article  PubMed  CAS  Google Scholar 

  3. Birukova AA, Xing J, Fu P, Yakubov B, Dubrovskyi O, Fortune JA, Klibanov AM, Birukov KG (2010) Atrial natriuretic peptide attenuates LPS-induced lung vascular leak: role of PAK1. Am J Physiol Lung Cell Mol Physiol 299:L652–L663

    Article  PubMed  CAS  Google Scholar 

  4. Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781

    Article  PubMed  CAS  Google Scholar 

  5. Buchner DA, Su F, Yamaoka JS, Kamei M, Shavit JA, Barthel LK, McGee B, Amigo JD, Kim S, Hanosh AW et al (2007) pak2a mutations cause cerebral hemorrhage in redhead zebrafish. Proc Natl Acad Sci USA 104:13996–14001

    Article  PubMed  CAS  Google Scholar 

  6. Chow HY, Jubb AM, Koch JN, Jaffer ZM, Stepanova D, Campbell DA, Duron SG, O’Farrell M, Cai KQ, Klein-Szanto AJ et al (2012) p21-Activated kinase 1 is required for efficient tumor formation and progression in a Ras-mediated skin cancer model. Cancer Res 72:5966–5975

    Article  PubMed  CAS  Google Scholar 

  7. Egom EE, Ke Y, Musa H, Mohamed TM, Wang T, Cartwright E, Solaro RJ, Lei M (2010) FTY720 prevents ischemia/reperfusion injury-associated arrhythmias in an ex vivo rat heart model via activation of Pak1/Akt signaling. J Mol Cell Cardiol 48:406–414

    Article  PubMed  CAS  Google Scholar 

  8. Gaengel K, Niaudet C, Hagikura K, Lavina B, Muhl L, Hofmann JJ, Ebarasi L, Nystrom S, Rymo S, Chen LL et al (2012) The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Dev Cell 23:587–599

    Article  PubMed  CAS  Google Scholar 

  9. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8:1223–1234

    Article  PubMed  CAS  Google Scholar 

  10. Goeckeler ZM, Masaracchia RA, Zeng Q, Chew TL, Gallagher P, Wysolmerski RB (2000) Phosphorylation of myosin light chain kinase by p21-activated kinase PAK2. J Biol Chem 275:18366–18374

    Article  PubMed  CAS  Google Scholar 

  11. Higuchi M, Onishi K, Kikuchi C, Gotoh Y (2008) Scaffolding function of PAK in the PDK1-Akt pathway. Nat Cell Biol 10:1356–1364

    Article  PubMed  CAS  Google Scholar 

  12. Jung B, Obinata H, Galvani S, Mendelson K, Ding BS, Skoura A, Kinzel B, Brinkmann V, Rafii S, Evans T, Hla T (2012) Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev Cell 23:600–610

    Article  PubMed  CAS  Google Scholar 

  13. Ke Y, Lei M, Collins TP, Rakovic S, Mattick PA, Yamasaki M, Brodie MS, Terrar DA, Solaro RJ (2007) Regulation of L-type calcium channel and delayed rectifier potassium channel activity by p21-activated kinase-1 in guinea pig sinoatrial node pacemaker cells. Circ Res 100:1317–1327

    Article  PubMed  CAS  Google Scholar 

  14. Ke Y, Lei M, Wang X, Solaro RJ (2012) Novel roles of PAK1 in the heart. Cell Logist 2:89–94

    Article  PubMed  Google Scholar 

  15. Ke Y, Sheehan KA, Egom EE, Lei M, Solaro RJ (2010) Novel bradykinin signaling in adult rat cardiac myocytes through activation of p21-activated kinase. Am J Physiol Heart Circ Physiol 298:H1283–H1289

    Article  PubMed  CAS  Google Scholar 

  16. Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ (2004) Intracellular localization and functional effects of P21-activated kinase-1 (Pak1) in cardiac myocytes. Circ Res 94:194–200

    Article  PubMed  CAS  Google Scholar 

  17. Kelly ML, Chernoff J (2012) Mouse models of PAK function. Cell Logist 2:84–88

    Article  PubMed  Google Scholar 

  18. Kiosses WB, Hood J, Yang S, Gerritsen ME, Cheresh DA, Alderson N, Schwartz MA (2002) A dominant-negative p65 PAK peptide inhibits angiogenesis. Circ Res 90:697–702

    Article  PubMed  CAS  Google Scholar 

  19. Koh W, Mahan RD, Davis GE (2008) Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121:989–1001

    Article  PubMed  CAS  Google Scholar 

  20. Koh W, Sachidanandam K, Stratman AN, Sacharidou A, Mayo AM, Murphy EA, Cheresh DA, Davis GE (2009) Formation of endothelial lumens requires a coordinated PKCepsilon-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J Cell Sci 122:1812–1822

    Article  PubMed  CAS  Google Scholar 

  21. Kosoff R, Chow HY, Radu M, Chernoff J (2013) Pak2 kinase restrains mast cell Fc{epsilon}RI receptor signaling through modulation of Rho protein guanine nucleotide exchange factor (GEF) activity. J Biol Chem 288:974–983

    Article  PubMed  CAS  Google Scholar 

  22. Liu J, Fraser SD, Faloon PW, Rollins EL, Vom Berg J, Starovic-Subota O, Laliberte AL, Chen JN, Serluca FC, Childs SJ (2007) A betaPix Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proc Natl Acad Sci USA 104:13990–13995

    Article  PubMed  CAS  Google Scholar 

  23. Liu W, Zi M, Naumann R, Ulm S, Jin J, Taglieri DM, Prehar S, Gui J, Tsui H, Xiao RP et al (2011) Pak1 as a novel therapeutic target for antihypertrophic treatment in the heart. Circulation 124:2702–2715

    Article  PubMed  CAS  Google Scholar 

  24. Mao K, Kobayashi S, Jaffer ZM, Huang Y, Volden P, Chernoff J, Liang Q (2008) Regulation of Akt/PKB activity by P21-activated kinase in cardiomyocytes. J Mol Cell Cardiol 44:429–434

    Article  PubMed  CAS  Google Scholar 

  25. Murray BW, Guo C, Piraino J, Westwick JK, Zhang C, Lamerdin J, Dagostino E, Knighton D, Loi CM, Zager M et al (2010) Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci USA 107:9446–9451

    Article  PubMed  CAS  Google Scholar 

  26. Nekrasova T, Minden A (2012) Role for p21-activated kinase PAK4 in development of the mammalian heart. Transgenic Res 21:797–811

    Article  PubMed  CAS  Google Scholar 

  27. Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR, Lin CY, Hla T (2007) Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 282:9082–9089

    Article  PubMed  CAS  Google Scholar 

  28. Stockton RA, Schaefer E, Schwartz MA (2004) p21-activated kinase regulates endothelial permeability through modulation of contractility. J Biol Chem 279:46621–46630

    Article  PubMed  CAS  Google Scholar 

  29. Tang Y, Zhou H, Chen A, Pittman RN, Field J (2000) The Akt proto-oncogene links Ras to Pak and cell survival signals. J Biol Chem 275:9106–9109

    Article  PubMed  CAS  Google Scholar 

  30. Tian Y, Lei L, Cammarano M, Nekrasova T, Minden A (2009) Essential role for the Pak4 protein kinase in extraembryonic tissue development and vessel formation. Mech Dev 126:710–720

    Article  PubMed  CAS  Google Scholar 

  31. Zeng Q, Lagunoff D, Masaracchia R, Goeckeler Z, Cote G, Wysolmerski R (2000) Endothelial cell retraction is induced by PAK2 monophosphorylation of myosin II. J Cell Sci 113(Pt 3):471–482

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Chernoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, M.L., Astsaturov, A. & Chernoff, J. Role of p21-activated kinases in cardiovascular development and function. Cell. Mol. Life Sci. 70, 4223–4228 (2013). https://doi.org/10.1007/s00018-013-1347-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1347-8

Keywords

Navigation