Skip to main content
Log in

MBD6 is a direct target of Oct4 and controls the stemness and differentiation of adipose tissue-derived stem cells

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Argonaute 2 (Ago2) is a pivotal regulator of cell fate in adult stem cells. Its expression is significantly downregulated in late passages of cells, concomitant with a prominent increase in Ago2 cytosolic localization in single cells. Nuclear localization of Ago2 is crucial for the survival, proliferation, and differentiation of hATSCs (human adipose tissue-derived stem cells), mediated by the specific binding of the regulatory regions of functional genes, which positively or negatively altered gene expression. Ago2 targets genes that control stemness, reactive oxygen species scavenging, and microRNA expression, all of which are crucial for hATSC survival and self-renewal. Ago2 promotes cell proliferation and self-renewal by activating the expression of octamer-binding transcription factor 4 (Oct4). We confirmed the direct regulation of Oct4 activity by Ago2, as indicated by the results of the ChIP analysis. Methyl-CpG-binding protein 6 (MBD6) was detected as an Oct4 regulatory gene. As predicted, knockdown of MBD6 expression attenuated cell proliferation and eventually induced cell death. We hypothesized that MBD6 functions downstream of Oct4 in the regulation of stemness-related genes, cell proliferation, self-renewal activity, and survival. MBD6 also promoted cell transdifferentiation into neural and endodermal β-cells while significantly attenuating differentiation into the mesodermal lineage. We demonstrate that MBD6 is regulated by Ago2 via an interaction with Oct4, which alters self-renewal and gene expression in hATSCs. MBD6 was promoted cell proliferation through a novel set of signal mediators that may influence differentiation by repressing MBD2 and MBD3, which are possibly recruited by germ cell nuclear factor (GCNF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ago2:

Argonaute2

BRCA2:

Breast cancer type 2 susceptibility protein

BrdU:

5-bromo-2′-deoxyuridine

CDK:

Cyclin-dependent kinases

CFU:

Colony forming unit

CM-Dil:

Chloromethyl-benzamidodialkylcarbocyanine

DCAF-DA:

1′, 7′-Dichlodihydrofluorescein diacetate

FOXG1:

Forkhead box protein G1

GFAP:

Glial fibrillary acidic protein

hATSC:

human Adipose Tissue-derived Stem Cell

JNK:

c-Jun N-terminal kinases

KLF4:

Krueppel-like factor 4

MAP2:

Microtubule-associated protein 2

MBD:

Methyl-CpG-binding protein

NF160:

Neurofilament 160

Oct4:

Octamer-binding transcription factor 4

PPARγ:

Peroxisome proliferator-activated receptor gamma

RISC:

RNA-induced silencing complex

ROS:

Reactive Oxygen Species

Runx3:

Runt-related transcription factor 3

SEPN1:

Selenoprotein N1

Sox2:

SRY (sex determing region Y)-box 2

STAT3:

Signal transducer and activator of transcription 3

Tuj:

beta III tubulin

USP44:

Upiquitin carboxyl-terminal hydrolase 44

References

  1. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005) Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci USA 102:12135–12140

    Article  PubMed  CAS  Google Scholar 

  2. Jang JH, Jung JS, Im YB, Kang KS, Choi JI, Kang SK (2012) Crucial role of nuclear Ago2 for hUCB-MSCs differentiation and self-renewal via stemness control. Antioxid Redox Signal 16:95–111

    Article  PubMed  CAS  Google Scholar 

  3. Tan GS, Garchow BG, Liu X, Yeung J, Morris JPt, Cuellar TL, McManus MT, Kiriakidou M (2009) Expanded RNA-binding activities of mammalian Argonaute 2. Nucleic Acids Res 37:7533–7545

    Article  PubMed  CAS  Google Scholar 

  4. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  PubMed  CAS  Google Scholar 

  5. Norddahl GL, Pronk CJ, Wahlestedt M, Sten G, Nygren JM, Ugale A, Sigvardsson M, Bryder D (2011) Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 8:499–510

    Article  PubMed  CAS  Google Scholar 

  6. Chambers I, Smith A (2004) Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene 23:7150–7160

    Article  PubMed  CAS  Google Scholar 

  7. Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183:355–366

    Article  PubMed  CAS  Google Scholar 

  8. Kelly DP (2011) Cell biology: ageing theories unified. Nature 470:342–343

    Article  PubMed  CAS  Google Scholar 

  9. Kim JH, Lee MR, Jee MK, Kang SK (2008) Selenium induces improvement of stem cell behaviors in human adipose-tissue stromal cells via SAPK/JNK and stemness acting signals. Stem Cells 26:2724–2734

    Article  PubMed  CAS  Google Scholar 

  10. Mattson MP (2011) A reaction to mitochondria in action. Cell Res 21:279–282

    Article  Google Scholar 

  11. Kim BS, Jung JS, Jang JH, Kang KS, Kang SK (2011) Nuclear Argonaute 2 regulates adipose tissue-derived stem cell survival through direct control of miR10b and selenoprotein N1 expression. Aging Cell 10:277–291

    Article  PubMed  CAS  Google Scholar 

  12. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  PubMed  CAS  Google Scholar 

  13. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  PubMed  CAS  Google Scholar 

  14. Yamanaka S, Takahashi K (2006) Induction of pluripotent stem cells from mouse fibroblast cultures. Tanpakushitsu Kakusan Koso 51:2346–2351

    PubMed  CAS  Google Scholar 

  15. Davey C, Pennings S, Allan J (1997) CpG methylation remodels chromatin structure in vitro. J Mol Biol 267:276–288

    Article  PubMed  CAS  Google Scholar 

  16. Kass SU, Pruss D, Wolffe AP (1997) How does DNA methylation repress transcription? Trends Genet 13:444–449

    Article  PubMed  CAS  Google Scholar 

  17. Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9:158–163

    Article  PubMed  CAS  Google Scholar 

  18. Razin A (1998) CpG methylation, chromatin structure and gene silencing-a three-way connection. EMBO J 17:4905–4908

    Article  PubMed  CAS  Google Scholar 

  19. Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507

    Article  PubMed  CAS  Google Scholar 

  20. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191

    Article  PubMed  CAS  Google Scholar 

  21. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  PubMed  CAS  Google Scholar 

  22. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61

    PubMed  CAS  Google Scholar 

  23. Cross SH, Meehan RR, Nan X, Bird A (1997) A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nat Genet 16:256–259

    Article  PubMed  CAS  Google Scholar 

  24. Hendrich B, Bird A (1998) Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18:6538–6547

    PubMed  CAS  Google Scholar 

  25. Ohki I, Shimotake N, Fujita N, Nakao M, Shirakawa M (1999) Solution structure of the methyl-CpG-binding domain of the methylation-dependent transcriptional repressor MBD1. EMBO J 18:6653–6661

    Article  PubMed  CAS  Google Scholar 

  26. Wakefield RI, Smith BO, Nan X, Free A, Soteriou A, Uhrin D, Bird AP, Barlow PN (1999) The solution structure of the domain from MeCP2 that binds to methylated DNA. J Mol Biol 291:1055–1065

    Article  PubMed  CAS  Google Scholar 

  27. Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F, Wolffe AP (1999) Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet 23:62–66

    PubMed  CAS  Google Scholar 

  28. Zhang Y, Ng HH, Erdjument-Bromage H, Tempst P, Bird A, Reinberg D (1999) Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev 13:1924–1935

    Article  PubMed  CAS  Google Scholar 

  29. Jang JH, Jung JS, Choi JI, Kang SK (2012) Nuclear Ago2/HSP60 contributes to broad spectrum of hATSCs function via Oct4 regulation. Antioxid Redox Signal 16(5):383–399

    Article  PubMed  CAS  Google Scholar 

  30. Jiang CL, Jin SG, Pfeifer GP (2004) MBD3L1 is a transcriptional repressor that interacts with methyl-CpG-binding protein 2 (MBD2) and components of the NuRD complex. J Biol Chem 279:52456–52464

    Article  PubMed  CAS  Google Scholar 

  31. Sakai H, Urano T, Ookata K, Kim MH, Hirai Y, Saito M, Nojima Y, Ishikawa F (2002) MBD3 and HDAC1, two components of the NuRD complex, are localized at Aurora-A-positive centrosomes in M phase. J Biol Chem 277:48714–48723

    Article  PubMed  CAS  Google Scholar 

  32. Zhu D, Fang J, Li Y, Zhang J (2009) Mbd3, a component of NuRD/Mi-2 complex, helps maintain pluripotency of mouse embryonic stem cells by repressing trophectoderm differentiation. PLoS ONE 4:e7684

    Article  PubMed  Google Scholar 

  33. Petronzelli F, Riccio A, Markham GD, Seeholzer SH, Stoerker J, Genuardi M, Yeung AT, Matsumoto Y, Bellacosa A (2000) Biphasic kinetics of the human DNA repair protein MED1 (MBD4), a mismatch-specific DNA N-glycosylase. J Biol Chem 275:32422–32429

    Article  PubMed  CAS  Google Scholar 

  34. Tatematsu KI, Yamazaki T, Ishikawa F (2000) MBD2–MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase. Genes Cells 5:677–688

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, van Deursen J, Galardy PJ (2011) Overexpression of ubiquitin specific protease 44 (USP44) induces chromosomal instability and is frequently observed in human T-cell leukemia. PLoS ONE 6:e23389

    Article  PubMed  CAS  Google Scholar 

  36. Badie S, Escandell JM, Bouwman P, Carlos AR, Thanasoula M, Gallardo MM, Suram A, Jaco I, Benitez J, Herbig U, Blasco MA, Jonkers J, Tarsounas M (2010) BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping. Nat Struct Mol Biol 17:1461–1469

    Article  PubMed  CAS  Google Scholar 

  37. Laget S, Joulie M, Le Masson F, Sasai N, Christians E, Pradhan S, Roberts RJ, Defossez PA (2010) The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. PLoS ONE 5:e11982

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MEST, 2010-0020265).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Kyung Kang.

Additional information

Jin Sun Jung and Min Ki Jee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, J.S., Jee, M.K., Cho, H.T. et al. MBD6 is a direct target of Oct4 and controls the stemness and differentiation of adipose tissue-derived stem cells. Cell. Mol. Life Sci. 70, 711–728 (2013). https://doi.org/10.1007/s00018-012-1157-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1157-4

Keywords

Navigation