Skip to main content

Advertisement

Log in

TCR signaling requirements for activating T cells and for generating memory

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Over the last two decades the molecular and cellular mechanisms underlying T cell activation, expansion, differentiation, and memory formation have been intensively investigated. These studies revealed that the generation of memory T cells is critically impacted by a number of factors, including the magnitude of the inflammatory response and cytokine production, the type of dendritic cell [DC] that presents the pathogen derived antigen, their maturation status, and the concomitant provision of costimulation. Nevertheless, the primary stimulus leading to T cell activation is generated through the T cell receptor [TCR] following its engagement with a peptide MHC ligand [pMHC]. The purpose of this review is to highlight classical and recent findings on how antigen recognition, the degree of TCR stimulation, and intracellular signal transduction pathways impact the formation of effector and memory T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262

    Article  PubMed  CAS  Google Scholar 

  2. Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192

    Article  PubMed  CAS  Google Scholar 

  3. Blattman JN, Antia R, Sourdive DJ, Wang X, Kaech SM, Murali-Krishna K, Altman JD, Ahmed R (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195:657–664

    Article  PubMed  CAS  Google Scholar 

  4. Geiger R, Duhen T, Lanzavecchia A, Sallusto F (2009) Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med 206:1525–1534

    Article  PubMed  CAS  Google Scholar 

  5. Moon JJ, Chu HH, Pepper M, McSorley SJ, Jameson SC, Kedl RM, Jenkins MK (2007) Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27:203–213

    Article  PubMed  CAS  Google Scholar 

  6. Obar JJ, Khanna KM, Lefrancois L (2008) Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28:859–869

    Article  PubMed  CAS  Google Scholar 

  7. Murali-Krishna K, Altman JD, Suresh M, Sourdive DJ, Zajac AJ, Miller JD, Slansky J, Ahmed R (1998) Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177–187

    Article  PubMed  CAS  Google Scholar 

  8. Butz EA, Bevan MJ (1998) Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8:167–175

    Article  PubMed  CAS  Google Scholar 

  9. Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K, Mahar PL, Edupuganti S, Lalor S, Germon S, Del Rio C, Mulligan MJ, Staprans SI, Altman JD, Feinberg MB, Ahmed R (2008) Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28:710–722

    Article  PubMed  CAS  Google Scholar 

  10. Mempel TR, Henrickson SE, Von Andrian UH (2004) T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427:154–159

    Article  PubMed  CAS  Google Scholar 

  11. Bousso P, Robey E (2003) Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4:579–585

    Article  PubMed  CAS  Google Scholar 

  12. van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001) Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2:423–429

    PubMed  Google Scholar 

  13. Masopust D, Kaech SM, Wherry EJ, Ahmed R (2004) The role of programming in memory T-cell development. Curr Opin Immunol 16:217–225

    Article  PubMed  CAS  Google Scholar 

  14. van Stipdonk MJ, Hardenberg G, Bijker MS, Lemmens EE, Droin NM, Green DR, Schoenberger SP (2003) Dynamic programming of CD8+ T lymphocyte responses. Nat Immunol 4:361–365

    Article  PubMed  Google Scholar 

  15. Jelley-Gibbs DM, Brown DM, Dibble JP, Haynes L, Eaton SM, Swain SL (2005) Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J Exp Med 202:697–706

    Article  PubMed  CAS  Google Scholar 

  16. Turner DL, Cauley LS, Khanna KM, Lefrancois L (2007) Persistent antigen presentation after acute vesicular stomatitis virus infection. J Virol 81:2039–2046

    Article  PubMed  CAS  Google Scholar 

  17. Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H, Peixoto A, Flynn MP, Senman B, Junt T, Wong HC, Chakraborty AK, von Andrian UH (2008) T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol 9:282–291

    Article  PubMed  CAS  Google Scholar 

  18. Prlic M, Hernandez-Hoyos G, Bevan MJ (2006) Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J Exp Med 203:2135–2143

    Article  PubMed  CAS  Google Scholar 

  19. Dolfi DV, Duttagupta PA, Boesteanu AC, Mueller YM, Oliai CH, Borowski AB, Katsikis PD (2011) Dendritic cells and CD28 costimulation are required to sustain virus-specific CD8+ T cell responses during the effector phase in vivo. J Immunol 186:4599–4608

    Google Scholar 

  20. Khanna KM, McNamara JT, Lefrancois L (2007) In situ imaging of the endogenous CD8 T cell response to infection. Science 318:116–120

    Article  PubMed  CAS  Google Scholar 

  21. Stock AT, Mueller SN, van Lint AL, Heath WR, Carbone FR (2004) Cutting edge: prolonged antigen presentation after herpes simplex virus-1 skin infection. J Immunol 173:2241–2244

    PubMed  CAS  Google Scholar 

  22. Shaulov A, Murali-Krishna K (2008) CD8 T cell expansion and memory differentiation are facilitated by simultaneous and sustained exposure to antigenic and inflammatory milieu. J Immunol 180:1131–1138

    PubMed  CAS  Google Scholar 

  23. McGill J, Van Rooijen N, Legge KL (2008) Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J Exp Med 205:1635–1646

    Article  PubMed  CAS  Google Scholar 

  24. McGill J, Legge KL (2009) Cutting edge: contribution of lung-resident T cell proliferation to the overall magnitude of the antigen-specific CD8 T cell response in the lungs following murine influenza virus infection. J Immunol 183:4177–4181

    Article  PubMed  CAS  Google Scholar 

  25. Obst R, van Santen HM, Mathis D, Benoist C (2005) Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. J Exp Med 201:1555–1565

    Article  PubMed  CAS  Google Scholar 

  26. Williams MA, Bevan MJ (2004) Shortening the infectious period does not alter expansion of CD8 T cells but diminishes their capacity to differentiate into memory cells. J Immunol 173:6694–6702

    PubMed  CAS  Google Scholar 

  27. Badovinac VP, Haring JS, Harty JT (2007) Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26:827–841

    Article  PubMed  CAS  Google Scholar 

  28. Foulds KE, Shen H (2006) Clonal competition inhibits the proliferation and differentiation of adoptively transferred TCR transgenic CD4 T cells in response to infection. Journal of immunology 176:3037–3043

    CAS  Google Scholar 

  29. Blair DA, Lefrancois L (2007) Increased competition for antigen during priming negatively impacts the generation of memory CD4 T cells. Proc Nat Acad Sci USA 104:15045–15050

    Article  PubMed  CAS  Google Scholar 

  30. Alam SM, Travers PJ, Wung JL, Nasholds W, Redpath S, Jameson SC, Gascoigne NR (1996) T-cell-receptor affinity and thymocyte positive selection. Nature 381:616–620

    Article  PubMed  CAS  Google Scholar 

  31. Naeher D, Daniels MA, Hausmann B, Guillaume P, Luescher I, Palmer E (2007) A constant affinity threshold for T cell tolerance. J Exp Med 204:2553–2559

    Article  PubMed  CAS  Google Scholar 

  32. Palmer E, Naeher D (2009) Affinity threshold for thymic selection through a T-cell receptor-co-receptor zipper. Nat Rev Immunol 9:207–213

    Article  PubMed  CAS  Google Scholar 

  33. Zehn D, Lee SY, Bevan MJ (2009) Complete but curtailed T-cell response to very low-affinity antigen. Nature 458:211–214

    Article  PubMed  CAS  Google Scholar 

  34. Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–262

    Article  PubMed  CAS  Google Scholar 

  35. Goldrath AW, Bevan MJ (1999) Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11:183–190

    Article  PubMed  CAS  Google Scholar 

  36. Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC (2006) The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol 7:475–481

    Article  PubMed  CAS  Google Scholar 

  37. Haluszczak C, Akue AD, Hamilton SE, Johnson LD, Pujanauski L, Teodorovic L, Jameson SC, Kedl RM (2009) The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J Exp Med 206:435–448

    Article  PubMed  CAS  Google Scholar 

  38. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76:17–27

    Google Scholar 

  39. Wu LC, Tuot DS, Lyons DS, Garcia KC, Davis MM (2002) Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418:552–556

    Article  PubMed  CAS  Google Scholar 

  40. Stone JD, Chervin AS, Kranz DM (2009) T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology 126:165–176

    Article  PubMed  CAS  Google Scholar 

  41. Wang XL, Altman JD (2003) Caveats in the design of MHC class I tetramer/antigen-specific T lymphocytes dissociation assays. J Immunol Methods 280:25–35

    Article  PubMed  CAS  Google Scholar 

  42. Fahmy TM, Bieler JG, Edidin M, Schneck JP (2001) Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14:135–143

    PubMed  CAS  Google Scholar 

  43. Slifka MK, Whitton JL (2001) Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR. Nat Immunol 2:711–717

    Article  PubMed  CAS  Google Scholar 

  44. von Herrath MG, Dockter J, Oldstone MB (1994) How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1:231–242

    Article  Google Scholar 

  45. Zehn D, Bevan MJ (2006) T cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25:261–270

    Article  PubMed  CAS  Google Scholar 

  46. Gronski MA, Boulter JM, Moskophidis D, Nguyen LT, Holmberg K, Elford AR, Deenick EK, Kim HO, Penninger JM, Odermatt B, Gallimore A, Gascoigne NR, Ohashi PS (2004) TCR affinity and negative regulation limit autoimmunity. Nat Med 10:1234–1239

    Article  PubMed  CAS  Google Scholar 

  47. Zehn D, Turner MJ, Lefrancois L, Bevan MJ (2010) Lack of original antigenic sin in recall CD8(+) T cell responses. Journal of immunology 184:6320–6326

    Article  CAS  Google Scholar 

  48. Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Hollander GA, Gascoigne NR, Palmer E (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444:724–729

    Article  PubMed  CAS  Google Scholar 

  49. Yewdell JW, Reits E, Neefjes J (2003) Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat Rev Immunol 3:952–961

    Article  PubMed  CAS  Google Scholar 

  50. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN (1996) Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4:565–571

    Article  PubMed  CAS  Google Scholar 

  51. Purbhoo MA, Irvine DJ, Huppa JB, Davis MM (2004) T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol 5:524–530

    Article  PubMed  CAS  Google Scholar 

  52. Huppa JB, Davis MM (2003) T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3:973–983

    Article  PubMed  CAS  Google Scholar 

  53. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM (2002) Direct observation of ligand recognition by T cells. Nature 419:845–849

    Article  PubMed  CAS  Google Scholar 

  54. Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN (1997) Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6:715–726

    Article  PubMed  CAS  Google Scholar 

  55. Sporri R, Reis e Sousa C. 2002. Self peptide/MHC class I complexes have a negligible effect on the response of some CD8+ T cells to foreign antigen. Euro J Immunol 32: 3161-70

    Google Scholar 

  56. Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM (2005) Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434:238–243

    Article  PubMed  CAS  Google Scholar 

  57. Wulfing C, Sumen C, Sjaastad MD, Wu LC, Dustin ML, Davis MM (2002) Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 3:42–47

    Article  PubMed  CAS  Google Scholar 

  58. Lo WL, Felix NJ, Walters JJ, Rohrs H, Gross ML, Allen PM (2009) An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nat Immunol 10:1155–1161

    Article  PubMed  CAS  Google Scholar 

  59. Stefanova I, Dorfman JR, Germain RN (2002) Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420:429–434

    Article  PubMed  CAS  Google Scholar 

  60. Tewari K, Walent J, Svaren J, Zamoyska R, Suresh M (2006) Differential requirement for Lck during primary and memory CD8+ T cell responses. Proc Natl Acad Sci USA 103:16388–16393

    Article  PubMed  CAS  Google Scholar 

  61. Au-Yeung BB, Levin SE, Zhang C, Hsu LY, Cheng DA, Killeen N, Shokat KM, Weiss A (2010) A genetically selective inhibitor demonstrates a function for the kinase Zap70 in regulatory T cells independent of its catalytic activity. Nat Immunol 11:1085–1092

    Article  PubMed  CAS  Google Scholar 

  62. Jordan MS, Singer AL, Koretzky GA (2003) Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4:110–116

    Article  PubMed  CAS  Google Scholar 

  63. Smith-Garvin JE, Burns JC, Gohil M, Zou T, Kim JS, Maltzman JS, Wherry EJ, Koretzky GA, Jordan MS (2010) T-cell receptor signals direct the composition and function of the memory CD8+ T-cell pool. Blood 116:5548–5559

    Article  PubMed  CAS  Google Scholar 

  64. Wiehagen KR, Corbo E, Schmidt M, Shin H, Wherry EJ, Maltzman JS (2010) Loss of tonic T-cell receptor signals alters the generation but not the persistence of CD8+ memory T cells. Blood 116:5560–5570

    Article  PubMed  CAS  Google Scholar 

  65. Bushar ND, Corbo E, Schmidt M, Maltzman JS, Farber DL (2010) Ablation of SLP-76 signaling after T cell priming generates memory CD4 T cells impaired in steady-state and cytokine-driven homeostasis. Proc Natl Acad Sci USA 107:827–831

    Article  PubMed  CAS  Google Scholar 

  66. D’Souza WN, Chang CF, Fischer AM, Li M, Hedrick SM (2008) The Erk2 MAPK regulates CD8 T cell proliferation and survival. J Immunol 181:7617–7629

    PubMed  Google Scholar 

  67. Hedrick SM (2009) The cunning little vixen: foxo and the cycle of life and death. Nat Immunol 10:1057–1063

    Article  PubMed  CAS  Google Scholar 

  68. Barouch-Bentov R, Lemmens EE, Hu J, Janssen EM, Droin NM, Song J, Schoenberger SP, Altman A (2005) Protein kinase C-theta is an early survival factor required for differentiation of effector CD8+ T cells. J Immunol 175:5126–5134

    PubMed  CAS  Google Scholar 

  69. Priatel JJ, Teh SJ, Dower NA, Stone JC, Teh HS (2002) RasGRP1 transduces low-grade TCR signals which are critical for T cell development, homeostasis, and differentiation. Immunity 17:617–627

    Article  PubMed  CAS  Google Scholar 

  70. Arbour N, Naniche D, Homann D, Davis RJ, Flavell RA, Oldstone MB (2002) c-Jun NH(2)-terminal kinase (JNK)1 and JNK2 signaling pathways have divergent roles in CD8(+) T cell-mediated antiviral immunity. J. J Exp Med 195:801–810

    Article  PubMed  CAS  Google Scholar 

  71. Kersh EN, Kaech SM, Onami TM, Moran M, Wherry EJ, Miceli MC, Ahmed R (2003) TCR signal transduction in antigen-specific memory CD8 T cells. J Immunol 170:5455–5463

    PubMed  CAS  Google Scholar 

  72. Schmidt-Supprian M, Tian J, Ji H, Terhorst C, Bhan AK, Grant EP, Pasparakis M, Casola S, Coyle AJ, Rajewsky K (2004) I kappa B kinase 2 deficiency in T cells leads to defects in priming, B cell help, germinal center reactions, and homeostatic expansion. J Immunol 173:1612–1619

    PubMed  CAS  Google Scholar 

  73. Schmidt-Supprian M, Courtois G, Tian J, Coyle AJ, Israel A, Rajewsky K, Pasparakis M (2003) Mature T cells depend on signaling through the IKK complex. Immunity 19:377–389

    Article  PubMed  CAS  Google Scholar 

  74. Hettmann T, Opferman JT, Leiden JM, Ashton-Rickardt PG (2003) A critical role for NF-kappaB transcription factors in the development of CD8+ memory-phenotype T cells. Immunol Lett 85:297–300

    Article  PubMed  CAS  Google Scholar 

  75. Teixeiro E, Daniels MA, Hamilton SE, Schrum AG, Bragado R, Jameson SC, Palmer E (2009) Different T cell receptor signals determine CD8+ memory versus effector development. Science 323:502–505

    Article  PubMed  CAS  Google Scholar 

  76. Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107

    Article  PubMed  CAS  Google Scholar 

  77. Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112

    Article  PubMed  CAS  Google Scholar 

  78. Pearce EL (2010) Metabolism in T cell activation and differentiation. Curr Opin Immunol 22:314–320

    Article  PubMed  CAS  Google Scholar 

  79. Juntilla MM, Koretzky GA (2008) Critical roles of the PI3K/Akt signaling pathway in T cell development. Immunol Lett 116:104–110

    Article  PubMed  CAS  Google Scholar 

  80. Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P, Feijoo C, Okkenhaug K, Cantrell DA (2011) Protein Kinase B Controls Transcriptional Programs that Direct Cytotoxic T Cell Fate but Is Dispensable for T Cell Metabolism. Immunity 34:224–236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Zehn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zehn, D., King, C., Bevan, M.J. et al. TCR signaling requirements for activating T cells and for generating memory. Cell. Mol. Life Sci. 69, 1565–1575 (2012). https://doi.org/10.1007/s00018-012-0965-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0965-x

Keywords

Navigation