Skip to main content

Advertisement

Log in

Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Termination and resolution of inflammation are tightly linked to the inactivation of one of its strongest inducers, NF-κB. While canonical post-stimulus inactivation is achieved by upregulation of inhibitory molecules that relocate NF-κB complexes to the cytoplasm, termination of the NF-κB response can also be accomplished directly in the nucleus by posttranslational modifications, e.g., ubiquitination of the RelA subunit. Here we reveal a functional role for RelA monoubiquitination in regulating NF-κB activity. By employing serine-to-alanine mutants, we found that hypo-phosphorylated nuclear RelA is monoubiquitinated on multiple lysine residues. Ubiquitination was reversed by IκBα expression and was reduced when nuclear translocation was inhibited. RelA monoubiquitination decreased NF-κB transcriptional activity despite prolonged nuclear presence and independently of RelA degradation, possibly through decreased CREB-binding protein (CBP) co-activator binding. Polyubiquitin-triggered proteasomal degradation has been proposed as a model for RelA inactivation. However, here we show that proteasomal inhibition, similar to RelA hypo-phosphorylation, resulted in nuclear translocation and monoubiquitination of RelA. These findings indicate a degradation-independent mechanism for regulating the activity of nuclear RelA by ubiquitination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hoffmann A, Natoli G, Ghosh G (2006) Transcriptional regulation via the NF-κB signaling module. Oncogene 25:6706–6716

    Article  PubMed  CAS  Google Scholar 

  2. Ghosh S, Hayden MS (2008) New regulators of NF-κB in inflammation. Nat Rev Immunol 8:837–848

    Article  PubMed  CAS  Google Scholar 

  3. Anrather J, Csizmadia V, Soares MP, Winkler H (1999) Regulation of NF-κB RelA phosphorylation and transcriptional activity by p21ras and protein kinase Cζ in primary endothelial cells. J Biol Chem 274:13594–13603

    Article  PubMed  CAS  Google Scholar 

  4. Naumann M, Scheidereit C (1994) Activation of NF-κB in vivo is regulated by multiple phosphorylations. EMBO J 13:4597–4607

    PubMed  CAS  Google Scholar 

  5. Zhong HH, Suyang H, Erdjumentbromage H, Tempst P, Ghosh S (1997) The transcriptional activity of NF-κB is regulated by the IκB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89:413–424

    Article  PubMed  CAS  Google Scholar 

  6. Chen L, Shinde U, Ortolan TG, Madura K (2001) Ubiquitin-associated (UBA) domains in Rad23 bind ubiquitin and promote inhibition of multi-ubiquitin chain assembly. EMBO Rep 2:933–938

    Article  PubMed  CAS  Google Scholar 

  7. Kiernan R, Bres V, Ng RW, Coudart MP, El Messaoudi S, Sardet C, Jin DY, Emiliani S, Benkirane M (2003) Post-activation turn-off of NF-κB-dependent transcription is regulated by acetylation of p65. J Biol Chem 278:2758–2766

    Article  PubMed  CAS  Google Scholar 

  8. Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12:1413–1426

    Article  PubMed  CAS  Google Scholar 

  9. Yang XD, Huang B, Li M, Lamb A, Kelleher NL, Chen LF (2009) Negative regulation of NF-κB action by Set9-mediated lysine methylation of the RelA subunit. EMBO J 28:1055–1066

    Article  PubMed  CAS  Google Scholar 

  10. Maine GN, Mao X, Komarck CM, Burstein E (2007) COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase. EMBO J 26:436–447

    Article  PubMed  CAS  Google Scholar 

  11. Saccani S, Marazzi I, Beg AA, Natoli G (2004) Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor κB response. J Exp Med 200:107–113

    Article  PubMed  CAS  Google Scholar 

  12. Tanaka T, Grusby MJ, Kaisho T (2007) PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol 8:584–591

    Article  PubMed  CAS  Google Scholar 

  13. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102

    Article  PubMed  CAS  Google Scholar 

  14. Treier M, Staszewski LM, Bohmann D (1994) Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78:787–798

    Article  PubMed  CAS  Google Scholar 

  15. Gross-Mesilaty S, Reinstein E, Bercovich B, Tobias KE, Schwartz AL, Kahana C, Ciechanover A (1998) Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci USA 95:8058–8063

    Article  PubMed  CAS  Google Scholar 

  16. Chowdary DR, Dermody JJ, Jha KK, Ozer HL (1994) Accumulation of p53 in a mutant cell line defective in the ubiquitin pathway. Mol Cell Biol 14:1997–2003

    PubMed  CAS  Google Scholar 

  17. Huang TT, Kudo N, Yoshida M, Miyamoto S (2000) A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes. Proc Natl Acad Sci USA 97:1014–1019

    Article  PubMed  CAS  Google Scholar 

  18. Johnson C, Van Antwerp D, Hope TJ (1999) An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IκBα. EMBO J 18:6682–6693

    Article  PubMed  CAS  Google Scholar 

  19. Anrather J, Racchumi G, Iadecola C (2005) Cis-acting element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. J Biol Chem 280:244–252

    PubMed  CAS  Google Scholar 

  20. Beg AA, Ruben SM, Scheinman RI, Haskill S, Rosen CA, Baldwin AS Jr (1992) IκB interacts with the nuclear localization sequences of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev 6:1899–1913

    Article  PubMed  CAS  Google Scholar 

  21. Stack JH, Whitney M, Rodems SM, Pollok BA (2000) A ubiquitin-based tagging system for controlled modulation of protein stability. Nat Biotechnol 18:1298–1302

    Article  PubMed  CAS  Google Scholar 

  22. Zhang S, Van Pelt CK, Henion JD (2003) Automated chip-based nanoelectrospray-mass spectrometry for rapid identification of proteins separated by two-dimensional gel electrophoresis. Electrophoresis 24:3620–3632

    Article  PubMed  CAS  Google Scholar 

  23. Hochrainer K, Racchumi G, Anrather J (2007) Hypo-phosphorylation leads to nuclear retention of NF-κB p65 due to impaired IκBα gene synthesis. FEBS Lett 581:5493–5499

    Article  PubMed  CAS  Google Scholar 

  24. Thoms HC, Loveridge CJ, Simpson J, Clipson A, Reinhardt K, Dunlop MG, Stark LA (2010) Nucleolar targeting of RelA (p65) is regulated by COMMD1-dependent ubiquitination. Cancer Res 70:139–149

    Article  PubMed  CAS  Google Scholar 

  25. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D (1995) Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376:167–170

    Article  PubMed  CAS  Google Scholar 

  26. Sanchez-Alcazar JA, Ruiz-Cabello J, Hernandez-Munoz I, Pobre PS, de la Torre P, Siles-Rivas E, Garcia I, Kaplan O, Munoz-Yague MT, Solis-Herruzo JA (1997) Tumor necrosis factor-α increases ATP content in metabolically inhibited L929 cells preceding cell death. J Biol Chem 272:30167–30177

    Article  PubMed  CAS  Google Scholar 

  27. Woods KM, Chapes SK (1993) Three distinct cell phenotypes of induced-TNF cytotoxicity and their relationship to apoptosis. J Leukoc Biol 53:37–44

    PubMed  CAS  Google Scholar 

  28. Rice NR, Ernst MK (1993) In vivo control of NF-κB activation by IκBα. EMBO J 12:4685–4695

    PubMed  CAS  Google Scholar 

  29. Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9:536–542

    Article  PubMed  CAS  Google Scholar 

  30. Traenckner EB, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκBα that is still bound to NF-κB. EMBO J 13:5433–5441

    PubMed  CAS  Google Scholar 

  31. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5:461–466

    Article  PubMed  CAS  Google Scholar 

  32. Li H, Wittwer T, Weber A, Schneider H, Moreno R, Maine GN, Kracht M, Schmitz ML, Burstein E (2011) Regulation of NF-κB activity by competition between RelA acetylation and ubiquitination. Oncogene. doi:10.1038/onc.2011.1253

    Google Scholar 

  33. Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302:1972–1975

    Article  PubMed  CAS  Google Scholar 

  34. van der Horst A, de Vries-Smits AM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BM (2006) FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 8:1064–1073

    Article  PubMed  Google Scholar 

  35. Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1:661–671

    Article  PubMed  CAS  Google Scholar 

  36. Perkins ND (2006) Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene 25:6717–6730

    Article  PubMed  CAS  Google Scholar 

  37. Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286

    Article  PubMed  CAS  Google Scholar 

  38. Geng H, Wittwer T, Dittrich-Breiholz O, Kracht M, Schmitz ML (2009) Phosphorylation of NF-κB p65 at Ser468 controls its COMMD1-dependent ubiquitination and target gene-specific proteasomal elimination. EMBO Rep 10:381–386

    Article  PubMed  CAS  Google Scholar 

  39. Mao X, Gluck N, Li D, Maine GN, Li H, Zaidi IW, Repaka A, Mayo MW, Burstein E (2009) GCN5 is a required cofactor for a ubiquitin ligase that targets NF-κB/RelA. Genes Dev 23:849–861

    Article  PubMed  CAS  Google Scholar 

  40. Chernov MV, Bean LJ, Lerner N, Stark GR (2001) Regulation of ubiquitination and degradation of p53 in unstressed cells through C-terminal phosphorylation. J Biol Chem 276:31819–31824

    Article  PubMed  CAS  Google Scholar 

  41. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K, Nakayama KI (2004) Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 23:2116–2125

    Article  PubMed  CAS  Google Scholar 

  42. Musti AM, Treier M, Bohmann D (1997) Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275:400–402

    Article  PubMed  CAS  Google Scholar 

  43. Fuchs SY, Tappin I, Ronai Z (2000) Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J Biol Chem 275:12560–12564

    Article  PubMed  CAS  Google Scholar 

  44. Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K (2009) Pim-1 controls NF-κB signalling by stabilizing RelA/p65. Cell Death Differ 17:689–698

    Article  PubMed  Google Scholar 

  45. Wolff B, Sanglier JJ, Wang Y (1997) Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 4:139–147

    Article  PubMed  CAS  Google Scholar 

  46. Birbach A, Gold P, Binder BR, Hofer E, de Martin R, Schmid JA (2002) Signaling molecules of the NF-κB pathway shuttle constitutively between cytoplasm and nucleus. J Biol Chem 277:10842–10851

    Article  PubMed  CAS  Google Scholar 

  47. Rodriguez MS, Thompson J, Hay RT, Dargemont C (1999) Nuclear retention of IκBα protects it from signal-induced degradation and inhibits nuclear factor κB transcriptional activation. J Biol Chem 274:9108–9115

    Article  PubMed  CAS  Google Scholar 

  48. Tam WF, Lee LH, Davis L, Sen R (2000) Cytoplasmic sequestration of rel proteins by IκBα requires CRM1-dependent nuclear export. Mol Cell Biol 20:2269–2284

    Article  PubMed  CAS  Google Scholar 

  49. Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH (2007) Negative regulation of toll-like receptor signaling by NF-κB p50 ubiquitination blockade. Science 317:675–678

    Article  PubMed  CAS  Google Scholar 

  50. Salghetti SE, Kim SY, Tansey WP (1999) Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J 18:717–726

    Article  PubMed  CAS  Google Scholar 

  51. Krappmann D, Scheidereit C (1997) Regulation of NF-κB activity by IκBα and IκBβ stability. Immunobiology 198:3–13

    Article  PubMed  CAS  Google Scholar 

  52. Scott ML, Fujita T, Liou HC, Nolan GP, Baltimore D (1993) The p65 subunit of NF-κB regulates IκB by two distinct mechanisms. Genes Dev 7:1266–1276

    Article  PubMed  CAS  Google Scholar 

  53. Hohmann HP, Remy R, Scheidereit C, van Loon AP (1991) Maintenance of NF-κB activity is dependent on protein synthesis and the continuous presence of external stimuli. Mol Cell Biol 11:259–266

    PubMed  CAS  Google Scholar 

  54. Sen R, Baltimore D (1986) Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell 47:921–928

    Article  PubMed  CAS  Google Scholar 

  55. Sun SC, Ganchi PA, Beraud C, Ballard DW, Greene WC (1994) Autoregulation of the NF-κB transactivator RelA (p65) by multiple cytoplasmic inhibitors containing ankyrin motifs. Proc Natl Acad Sci USA 91:1346–1350

    Article  PubMed  CAS  Google Scholar 

  56. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430:694–699

    Article  PubMed  CAS  Google Scholar 

  57. Chen Z, Hagler J, Palombella VJ, Melandri F, Scherer D, Ballard D, Maniatis T (1995) Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev 9:1586–1597

    Article  PubMed  CAS  Google Scholar 

  58. Dolcet X, Llobet D, Encinas M, Pallares J, Cabero A, Schoenenberger JA, Comella JX, Matias-Guiu X (2006) Proteasome inhibitors induce death but activate NF-κB on endometrial carcinoma cell lines and primary culture explants. J Biol Chem 281:22118–22130

    Article  PubMed  CAS  Google Scholar 

  59. Li C, Chen S, Yue P, Deng X, Lonial S, Khuri FR, Sun SY (2010) Proteasome inhibitor PS-341 (bortezomib) induces calpain-dependent IκBα degradation. J Biol Chem 285:16096–16104

    Article  PubMed  CAS  Google Scholar 

  60. Nemeth ZH, Wong HR, Odoms K, Deitch EA, Szabo C, Vizi ES, Hasko G (2004) Proteasome inhibitors induce inhibitory κB (IκB) kinase activation, IκBα degradation, and nuclear factor κB activation in HT-29 cells. Mol Pharmacol 65:342–349

    Article  PubMed  CAS  Google Scholar 

  61. Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR (1999) Tumor necrosis factor-α-inducible IκBα proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-κB activation. J Biol Chem 274:787–794

    Article  PubMed  CAS  Google Scholar 

  62. Miyamoto S, Chiao PJ, Verma IM (1994) Enhanced IκBα degradation is responsible for constitutive NF-κB activity in mature murine B-cell lines. Mol Cell Biol 14:3276–3282

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the following persons for providing materials used in this study: Drs. Amer A. Beg (RelA−/− 3T3), Dirk Bohmann (pMT107), Rainer De Martin (pKSII/ECI-6), Ivan Dikic (pcDNA3-HA-ubiquitin) and Alexander Hoffmann (IκBα−/− 3T3). We also thank Dr. Wei Chen for performing the MS analysis. This work was supported by a National Institutes of Health grant [HL077308 to J.A.] and American Heart Association Scientist Development grant [10SDG2600298 to K.H.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Anrather.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochrainer, K., Racchumi, G., Zhang, S. et al. Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation. Cell. Mol. Life Sci. 69, 2057–2073 (2012). https://doi.org/10.1007/s00018-011-0912-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0912-2

Keywords

Navigation