Skip to main content

Advertisement

Log in

Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells’ activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alvarez-Buylla A, Garcia-Verdugo JM, Tramontin AD (2001) A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2(4):287–293

    Article  PubMed  CAS  Google Scholar 

  2. Gage FH (2000) Mammalian neural stem cells. Science 287(5457):1433–1438

    Article  PubMed  CAS  Google Scholar 

  3. Temple S (2001) The development of neural stem cells. Nature 414(6859):112–117

    Article  PubMed  CAS  Google Scholar 

  4. Popa-Wagner A, Buga AM, Kokaia Z (2009) Perturbed cellular response to brain injury during aging. Ageing Res Rev 10(1):71–79

    Article  PubMed  Google Scholar 

  5. Romanko MJ, Rola R, Fike JR, Szele FG, Dizon ML, Felling RJ, Brazel CY, Levison SW (2004) Roles of the mammalian sub-ventricular zone in cell replacement after brain injury. Prog Neurobiol 74(2):77–99

    Article  PubMed  Google Scholar 

  6. Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci 16(8):2649–2658

    PubMed  CAS  Google Scholar 

  7. Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH (1997) Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17(15):5820–5829

    PubMed  CAS  Google Scholar 

  8. Martinez-Serrano A, Fischer W, Bjorklund A (1995) Reversal of age-dependent cognitive impairments and cholinergic neuron atrophy by NGF-secreting neural progenitors grafted to the basal forebrain. Neuron 15(2):473–484

    Article  PubMed  CAS  Google Scholar 

  9. Vescovi AL, Gritti A, Galli R, Parati EA (1999) Isolation and intracerebral grafting of nontransformed multipotential embryonic human CNS stem cells. J Neurotrauma 16(8):689–693

    Article  PubMed  CAS  Google Scholar 

  10. Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E, Frolichsthal-Schoeller P, Cova L, Arcellana-Panlilio M, Colombo A, Galli R (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156(1):71–83

    Article  PubMed  CAS  Google Scholar 

  11. Gallo V, Armstrong RC (2008) Myelin repair strategies: a cellular view. Curr Opin Neurol 21(3):278–283

    Article  PubMed  Google Scholar 

  12. Goldman SA (2007) Disease targets and strategies for the therapeutic modulation of endogenous neural stem and progenitor cells. Clin Pharmacol Ther 82(4):453–460

    Article  PubMed  CAS  Google Scholar 

  13. Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11(5):951–966

    Article  PubMed  CAS  Google Scholar 

  14. De Filippis L, Lamorte G, Snyder EY, Malgaroli A, Vescovi AL (2007) A novel immortal and multipotent human neural stem cell line generating functional neurons and oligodendrocytes. Stem Cells 25(9):2312–2321

    Article  PubMed  Google Scholar 

  15. Villa A, Snyder EY, Vescovi A, Martinez-Serrano A (2000) Establishment and properties of a growth factor-dependent perpetual neural stem cell line from the human CNS. Exp Neurol 161(1):67–84

    Article  PubMed  CAS  Google Scholar 

  16. De Filippis L, Ferrari D, Rota Nodari L, Amati B, Snyder E, Vescovi AL (2008) Immortalization of human neural stem cells with the c-myc mutant T58A. PLoS One 3(10):e3310

    Article  PubMed  Google Scholar 

  17. Behrstock S, Ebert A, McHugh J, Vosberg S, Moore J, Schneider B, Capowski E, Hei D, Kordower J, Aebischer P, Svendsen CN (2006) Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 13(5):379–388

    Article  PubMed  CAS  Google Scholar 

  18. Ebert AD, Svendsen CN (2005) A new tool in the battle against Alzheimer’s disease and aging: ex vivo gene therapy. Rejuvenation Res 8(3):131–134

    Article  PubMed  CAS  Google Scholar 

  19. Lee HJ, Kim KS, Park IH, Kim SU (2007) Human neural stem cells over-expressing VEGF provide neuroprotection, angiogenesis and functional recovery in mouse stroke model. PLoS One 2(1):e156

    Article  PubMed  Google Scholar 

  20. Suzuki M, McHugh J, Tork C, Shelley B, Klein SM, Aebischer P, Svendsen CN (2007) GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2(1):e689

    Article  PubMed  Google Scholar 

  21. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders–time for clinical translation? J Clin Invest 120(1):29–40

    Article  PubMed  CAS  Google Scholar 

  22. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Muller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, La Ferla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci USA 106(32):13594–13599

    Article  PubMed  CAS  Google Scholar 

  23. Boockvar JA, Schouten J, Royo N, Millard M, Spangler Z, Castelbuono D, Snyder E, O’Rourke D, McIntosh T (2005) Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery 56(1):163–171

    PubMed  Google Scholar 

  24. Englund U, Bjorklund A, Wictorin K (2002) Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Brain Res Dev Brain Res 134(1–2):123–141

    Article  PubMed  CAS  Google Scholar 

  25. Pluchino S, Gritti A, Blezer E, Amadio S, Brambilla E, Borsellino G, Cossetti C, Del Carro U, Comi G, Hart BT, Vescovi A, Martino G (2009) Human neural stem cells ameliorate autoimmune encephalomyelitis in non-human primates. Ann Neurol 66(3):343–354

    Article  PubMed  CAS  Google Scholar 

  26. Neri M, Maderna C, Ferrari D, Cavazzin C, Vescovi AL, Gritti A (2010) Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 5(4):e10145

    Article  PubMed  Google Scholar 

  27. Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, Galli R, Del Carro U, Amadio S, Bergami A, Furlan R, Comi G, Vescovi AL, Martino G (2003) Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 422(6933):688–694

    Article  PubMed  CAS  Google Scholar 

  28. Rota Nodari L, Ferrari D, Giani F, Bossi M, Rodriguez-Menendez V, Tredici G, Delia D, Vescovi AL, De Filippis L (2010) Long-Term Survival of Human Neural Stem Cells in the Ischemic Rat Brain upon Transient Immunosuppression. PLoS One 5(11):e14035

    Article  PubMed  Google Scholar 

  29. Hall SM (1972) The effect of injections of lysophosphatidyl choline into white matter of the adult mouse spinal cord. J Cell Sci 10(2):535–546

    PubMed  CAS  Google Scholar 

  30. Nait-Oumesmar B, Decker L, Lachapelle F, Avellana-Adalid V, Bachelin C, Van Evercooren AB (1999) Progenitor cells of the adult mouse sub-ventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur J Neurosci 11(12):4357–4366

    Article  PubMed  CAS  Google Scholar 

  31. Taupin P (2006) HuCNS-SC (stem cells). Curr Opin Mol Ther 8(2):156–163

    PubMed  CAS  Google Scholar 

  32. Raore B, Federici T, Taub J, Wu MC, Riley J, Franz CK, Kliem MA, Snyder B, Feldman EL, Johe K, Boulis NM (2011) Cervical multilevel intraspinal stem cell therapy: assessment of surgical risks in Göttingen mini pigs. Spine 36(3):E164–E171

    Article  PubMed  Google Scholar 

  33. Stroemer P, Patel S, Hope A, Oliveira C, Pollock K, Sinden J (2009) The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. Neurorehabil Neural Repair 23(9):895–909

    Article  PubMed  Google Scholar 

  34. Carlessi L, De Filippis L, Lecis D, Vescovi A, Delia D (2009) DNA-damage response, survival and differentiation in vitro of a human neural stem cell line in relation to ATM expression. Cell Death Differ 16(6):795–806

    Article  PubMed  CAS  Google Scholar 

  35. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  PubMed  CAS  Google Scholar 

  36. Ghasemlou N, Jeong SY, Lacroix S, David S (2007) T cells contribute to lysophosphatidylcholine-induced macrophage activation and demyelination in the CNS. Glia 55(3):294–302

    Article  PubMed  Google Scholar 

  37. Ousman SS, David S (2000) Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia 30(1):92–104

    Article  PubMed  CAS  Google Scholar 

  38. Ousman SS, David S (2001) MIP-1 alpha, MCP-1 GM-CSF, and TNF-alpha control the immune cell response that mediates rapid phagocytosis of myelin from the adult mouse spinal cord. J Neurosci 21(13):4649–4656

    PubMed  CAS  Google Scholar 

  39. Aguirre A, Dupree JL, Mangin JM, Gallo V (2007) A functional role for EGFR signaling in myelination and remyelination. Nat Neurosci 10(8):990–1002

    Article  PubMed  CAS  Google Scholar 

  40. Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467(7313):323–327

    Article  PubMed  CAS  Google Scholar 

  41. Allamargot C, Pouplard-Barthelaix A, Fressinaud C (2001) A single intracerebral microinjection of platelet-derived growth factor (PDGF) accelerates the rate of remyelination in vivo. Brain Res 918(1–2):28–39

    Article  PubMed  CAS  Google Scholar 

  42. Carbajal KS, Schaumburg C, Strieter R, Kane J, Lane TE (2010) Migration of engrafted neural stem cells is mediated by CXCL12 signaling through CXCR4 in a viral model of multiple sclerosis. Proc Natl Acad Sci USA 107(24):11068–11073

    Article  PubMed  CAS  Google Scholar 

  43. Jean I, Allamargot C, Barthelaix-Pouplard A, Fressinaud C (2002) Axonal lesions and PDGF-enhanced remyelination in the rat corpus callosum after lysolecithin demyelination. Neuroreport 13(5):627–631

    Article  PubMed  CAS  Google Scholar 

  44. Murtie JC, Zhou YX, Le TQ, Vana AC, Armstrong RC (2005) PDGF and FGF2 pathways regulate distinct oligodendrocyte lineage responses in experimental demyelination with spontaneous remyelination. Neurobiol Dis 19(1–2):171–182

    Article  PubMed  CAS  Google Scholar 

  45. Patel JR, McCandless EE, Dorsey D, Klein RS (2010) CXCR4 promotes differentiation of oligodendrocyte progenitors and remyelination. Proc Natl Acad Sci USA 107(24):11062–11067

    Article  PubMed  CAS  Google Scholar 

  46. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13(5):543–550

    Article  PubMed  CAS  Google Scholar 

  47. Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2 + CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68(4):668–681

    Article  PubMed  CAS  Google Scholar 

  48. Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G 2nd, Roy NS, Goldman SA (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med 10(1):93–97

    Article  PubMed  CAS  Google Scholar 

  49. Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2(6):553–565

    Article  PubMed  CAS  Google Scholar 

  50. Ray A, Mann MK, Basu S, Dittel BN (2011) A case for regulatory B cells in controlling the severity of autoimmune-mediated inflammation in experimental autoimmune encephalomyelitis and multiple sclerosis. J Neuroimmunol 230(1–2):1–9

    Article  PubMed  CAS  Google Scholar 

  51. Gadea A, Schinelli S, Gallo V (2008) Endothelin-1 regulates astrocyte proliferation and reactive gliosis via a JNK/c-Jun signaling pathway. J Neurosci 28(10):2394–2408

    Article  PubMed  CAS  Google Scholar 

  52. Foote AK, Blakemore WF (2005) Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128(Pt 3):528–539

    Article  PubMed  CAS  Google Scholar 

  53. Woodruff RH, Franklin RJ (1999) Demyelination and remyelination of the caudal cerebellar peduncle of adult rats following stereotaxic injections of lysolecithin ethidium bromide, and complement/anti-galactocerebroside: a comparative study. Glia 25(3):216–228

    Article  PubMed  CAS  Google Scholar 

  54. Capone C, Frigerio S, Fumagalli S, Gelati M, Principato MC, Storini C, Montinaro M, Kraftsik R, De Curtis M, Parati E, De Simoni MG (2007) Neurosphere-derived cells exert a neuroprotective action by changing the ischemic microenvironment. PLoS One 2(4):e373

    Article  PubMed  Google Scholar 

  55. Kelly S, Bliss TM, Shah AK, Sun GH, Ma M, Foo WC, Masel J, Yenari MA, Weissman IL, Uchida N, Palmer T, Steinberg GK (2004) Transplanted human fetal neural stem cells survive migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci USA 101(32):11839–11844

    Article  PubMed  CAS  Google Scholar 

  56. Aboody KS, Najbauer J, Danks MK (2008) Stem and progenitor cell-mediated tumor selective gene therapy. Gene Ther 15(10):739–752

    Article  PubMed  CAS  Google Scholar 

  57. Rivers LE, Young KM, Rizzi M, Jamen F, Psachoulia K, Wade A, Kessaris N, Richardson WD (2008) PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nat Neurosci 11(12):1392–1401

    Article  PubMed  CAS  Google Scholar 

  58. Corsini NS, Sancho-Martinez I, Laudenklos S, Glagow D, Kumar S, Letellier E, Koch P, Teodorczyk M, Kleber S, Klussmann S, Wiestler B, Brustle O, Mueller W, Gieffers C, Hill O, Thiemann M, Seedorf M, Gretz N, Sprengel R, Celikel T, Martin-Villalba A (2009) The death receptor CD95 activates adult neural stem cells for working memory formation and brain repair. Cell Stem Cell 5(2):178–190

    Article  PubMed  CAS  Google Scholar 

  59. Chandran S, Compston A, Jauniaux E, Gilson J, Blakemore W, Svendsen C (2004) Differential generation of oligodendrocytes from human and rodent embryonic spinal cord neural precursors. Glia 47(4):314–324

    Article  PubMed  Google Scholar 

  60. Targett MP, Sussman J, Scolding N, O’Leary MT, Compston DA, Blakemore WF (1996) Failure to achieve remyelination of demyelinated rat axons following transplantation of glial cells obtained from the adult human brain. Neuropathol Appl Neurobiol 22(3):199–206

    Article  PubMed  CAS  Google Scholar 

  61. Maciaczyk J, Singec I, Maciaczyk D, Klein A, Nikkhah G (2009) Restricted spontaneous in vitro differentiation and region-specific migration of long-term expanded fetal human neural precursor cells after transplantation into the adult rat brain. Stem Cells Dev 18(7):1043–1058

    Article  PubMed  CAS  Google Scholar 

  62. Maire CL, Buchet D, Kerninon C, Deboux C, Van Baron Evercooren A, Nait-Oumesmar B (2009) Directing human neural stem/precursor cells into oligodendrocytes by overexpression of Olig2 transcription factor. J Neurosci Res 87(15):3438–3446

    Article  PubMed  CAS  Google Scholar 

  63. Lindvall O, Bjorklund A (2004) Cell replacement therapy: helping the brain to repair itself. NeuroRx 1(4):379–381

    Article  PubMed  Google Scholar 

  64. Fagel DM, Ganat Y, Silbereis J, Ebbitt T, Stewart W, Zhang H, Ment LR, Vaccarino FM (2006) Cortical neurogenesis enhanced by chronic perinatal hypoxia. Exp Neurol 199(1):77–91

    Article  PubMed  Google Scholar 

  65. Parent JM, Valentin VV, Lowenstein DH (2002) Prolonged seizures increase proliferating neuroblasts in the adult rat sub-ventricular zone-olfactory bulb pathway. J Neurosci 22(8):3174–3188

    PubMed  CAS  Google Scholar 

  66. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R, Comi G, Constantin G, Martino G (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436(7048):266–271

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pietro De Filippis, Patrizia Karoschitz, Cesare Rota Nodari, Loredana Turani, Antonio Tomaino, for precious suggestions. This work was supported by the CARIPLO Foundation; Neurothon ONLUS Foundation; Italian Association for Cancer Research (AIRC); Italian Ministry of Health (Ricerca Finalizzata). This work was financially supported by grants from the CARIPLO Foundation, the Neurothon ONLUS Foundation, Fondazione Borgonovo ONLUS, and by the Italian Association for Cancer Research (AIRC), the Italian Ministry of Health (Ricerca Finalizzata), and Stemgen S.p.a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniela Ferrari or Lidia De Filippis.

Additional information

D. Ferrari and C. Zalfa contributed equally to this work.

The present work was developed at the University of Milano-Bicocca, Department of Biotechnologies and Biosciences, Milan, Italy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

18_2011_873_MOESM1_ESM.tif

Supplementary Fig. 1 Differential expression of CXCL12 and EGF in the lesioned versus contralateral hemisphere. Confocal images showing the enhanced expression of CXCL12 (A–B) and EGF (C–D), respectively, in the lesioned (A and C) versus the contralateral (B and D) hemisphere. Total nuclei are shown by DAPI staining (blue). Scale bars = 75 μm (TIFF 30871 kb)

18_2011_873_MOESM2_ESM.tif

Supplementary Fig. 2 Coimmunolabeled huNestin +/GFAP + cells in transplanted animals. Confocal analysis of huNestin + (green)/GFAP + (red) cells along the SVZ wall deriving from hNSC. Total nuclei are shown by DAPI staining (blue). Scale bars = 75 μm (inset = 14 μm). lv lateral ventricle, cc corpus callosum (TIFF 3368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, D., Zalfa, C., Rota Nodari, L. et al. Differential pathotropism of non-immortalized and immortalized human neural stem cell lines in a focal demyelination model. Cell. Mol. Life Sci. 69, 1193–1210 (2012). https://doi.org/10.1007/s00018-011-0873-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0873-5

Keywords

Navigation