Skip to main content
Log in

Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin-1: a novel mechanism influencing microfibril assembly and function

  • Multi-author review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Summary

Tissue microfibrils contain fibrillin-1 as a major constituent. Microfibrils regulate bioavailability of TGFβ superfamily growth factors and are structurally crucial in the ocular zonule. FBN1 mutations typically cause the Marfan syndrome, an autosomal dominant disorder manifesting with skeletal overgrowth, aortic aneurysm, and lens dislocation (ectopia lentis). Infrequently, FBN1 mutations cause dominantly inherited Weill–Marchesani syndrome (WMS), isolated ectopia lentis (IEL), or the fibrotic condition, geleophysic dysplasia (GD). Intriguingly, mutations in ADAMTS [a disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif] family members phenocopy these disorders, leading to recessive WMS (ADAMTS10), WMS-like syndrome (ADAMTS17), IEL (ADAMTSL4 and ADAMTS17) and GD (ADAMTSL2). An ADAMTSL2 founder mutation causes Musladin–Lueke syndrome, a fibrotic disorder in beagle dogs. The overlapping disease spectra resulting from fibrillin-1 and ADAMTS mutations, interaction of ADAMTS10 and ADAMTSL2 with fibrillin-1, and evidence that these ADAMTS proteins accelerate microfibril biogenesis, constitutes a consilience suggesting that some ADAMTS proteins evolved to provide a novel mechanism regulating microfibril formation and consequently cell behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADAMTS:

A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type-1 motif

ECM:

Extracellular matrix

GD:

Geleophysic dysplasia

HSPG:

Heparan sulfate proteoglycan

IEL:

Isolated ectopia lentis

MFS:

Marfan syndrome

MIM:

Mendelian inheritance in man

MLS:

Musladin–Lueke syndrome

TGFβ:

Transforming growth factor β

WMS:

Weill–Marchesani syndrome

References

  1. Hubmacher D, Tiedemann K, Reinhardt DP (2006) Fibrillins: from biogenesis of microfibrils to signaling functions. Curr Top Dev Biol 75:93–123

    Article  PubMed  CAS  Google Scholar 

  2. Wright DW, Mayne R (1988) Vitreous humor of chicken contains two fibrillar systems: an analysis of their structure. J Ultrastruct Mol Struct Res 100:224–234

    Article  PubMed  CAS  Google Scholar 

  3. Keene DR, Maddox BK, Kuo HJ, Sakai LY, Glanville RW (1991) Extraction of extendable beaded structures and their identification as fibrillin-containing extracellular matrix microfibrils. J Histochem Cytochem 39:441–449

    Article  PubMed  CAS  Google Scholar 

  4. Corson GM, Charbonneau NL, Keene DR, Sakai LY (2004) Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues. Genomics 83:461–472

    Article  PubMed  CAS  Google Scholar 

  5. Ramirez F, Rifkin DB (2009) Extracellular microfibrils: contextual platforms for TGFbeta and BMP signaling. Curr Opin Cell Biol 21:616–622

    Article  PubMed  CAS  Google Scholar 

  6. Ramirez F, Sakai LY (2010) Biogenesis and function of fibrillin assemblies. Cell Tissue Res 339:71–82

    Article  PubMed  CAS  Google Scholar 

  7. Robertson I, Jensen S, Handford P (2010) TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem J 433:263–276

    Article  Google Scholar 

  8. Wheatley HM, Traboulsi EI, Flowers BE, Maumenee IH, Azar D, Pyeritz RE, Whittum-Hudson JA (1995) Immunohistochemical localization of fibrillin in human ocular tissues Relevance to the Marfan syndrome. Arch Ophthalmol 113:103–109

    PubMed  CAS  Google Scholar 

  9. Cain SA, Morgan A, Sherratt MJ, Ball SG, Shuttleworth CA, Kielty CM (2006) Proteomic analysis of fibrillin-rich microfibrils. Proteomics 6:111–122

    Article  PubMed  CAS  Google Scholar 

  10. Ramirez F, Dietz HC (2007) Marfan syndrome: from molecular pathogenesis to clinical treatment. Curr Opin Genet Dev 17:252–258

    Article  PubMed  CAS  Google Scholar 

  11. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, Hilhorst-Hofstee Y, Jondeau G, Faivre L, Milewicz DM, Pyeritz RE, Sponseller PD, Wordsworth P, De Paepe AM (2010) The revised Ghent nosology for the Marfan syndrome. J Med Genet 47:476–485

    Article  PubMed  CAS  Google Scholar 

  12. Pyeritz RE (2000) The Marfan syndrome. Annu Rev Med 51:481–510

    Article  PubMed  CAS  Google Scholar 

  13. Robinson PN, Arteaga-Solis E, Baldock C, Collod-Beroud G, Booms P, De Paepe A, Dietz HC, Guo G, Handford PA, Judge DP, Kielty CM, Loeys B, Milewicz DM, Ney A, Ramirez F, Reinhardt DP, Tiedemann K, Whiteman P, Godfrey M (2006) The molecular genetics of Marfan syndrome and related disorders. J Med Genet 43:769–787

    Article  PubMed  CAS  Google Scholar 

  14. Carta L, Pereira L, Arteaga-Solis E, Lee-Arteaga SY, Lenart B, Starcher B, Merkel CA, Sukoyan M, Kerkis A, Hazeki N, Keene DR, Sakai LY, Ramirez F (2006) Fibrillins 1 and 2 perform partially overlapping functions during aortic development. J Biol Chem 281:8016–8023

    Article  PubMed  CAS  Google Scholar 

  15. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  PubMed  CAS  Google Scholar 

  16. Nistala H, Lee-Arteaga S, Smaldone S, Siciliano G, Carta L, Ono RN, Sengle G, Arteaga-Solis E, Levasseur R, Ducy P, Sakai LY, Karsenty G, Ramirez F (2010) Fibrillin-1 and -2 differentially modulate endogenous TGF-beta and BMP bioavailability during bone formation. J Cell Biol 190:1107–1121

    Article  PubMed  CAS  Google Scholar 

  17. Pereira L, Andrikopoulos K, Tian J, Lee SY, Keene DR, Ono R, Reinhardt DP, Sakai LY, Biery NJ, Bunton T, Dietz HC, Ramirez F (1997) Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet 17:218–222

    Article  PubMed  CAS  Google Scholar 

  18. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823

    Article  PubMed  CAS  Google Scholar 

  19. Putnam EA, Zhang H, Ramirez F, Milewicz DM (1995) Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nat Genet 11:456–458

    Article  PubMed  CAS  Google Scholar 

  20. Arteaga-Solis E, Gayraud B, Lee SY, Shum L, Sakai L, Ramirez F (2001) Regulation of limb patterning by extracellular microfibrils. J Cell Biol 154:275–281

    Article  PubMed  CAS  Google Scholar 

  21. Hatzirodos N, Bayne RA, Irving-Rodgers HF, Hummitzsch K, Sabatier L, Lee S, Bonner W, Gibson MA, Rainey WE, Carr BR, Mason HD, Reinhardt DP, Anderson RA, Rodgers RJ (2011) Linkage of regulators of TGF-{beta} activity in the fetal ovary to polycystic ovary syndrome. FASEB J (in press)

  22. Urbanek M, Sam S, Legro RS, Dunaif A (2007) Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab 92:4191–4198

    Article  PubMed  CAS  Google Scholar 

  23. Traboulsi EI (1998) Subluxation of the crystalline lens and associated systemic disease. In: Traboulsi EI (ed) Genetic diseases of the eye. Oxford University Press, New York, pp 605–628

    Google Scholar 

  24. Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114:172–181

    PubMed  CAS  Google Scholar 

  25. Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312:117–121

    Article  PubMed  CAS  Google Scholar 

  26. Ng CM, Cheng A, Myers LA, Martinez-Murillo F, Jie C, Bedja D, Gabrielson KL, Hausladen JM, Mecham RP, Judge DP, Dietz HC (2004) TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest 114:1586–1592

    PubMed  CAS  Google Scholar 

  27. Annes JP, Munger JS, Rifkin DB (2003) Making sense of latent TGFbeta activation. J Cell Sci 116:217–224

    Article  PubMed  CAS  Google Scholar 

  28. Hyytiainen M, Penttinen C, Keski-Oja J (2004) Latent TGF-beta binding proteins: extracellular matrix association and roles in TGF-beta activation. Crit Rev Clin Lab Sci 41:233–264

    Article  PubMed  Google Scholar 

  29. Rifkin DB (2005) Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 280:7409–7412

    Article  PubMed  CAS  Google Scholar 

  30. Dallas SL, Keene DR, Bruder SP, Saharinen J, Sakai LY, Mundy GR, Bonewald LF (2000) Role of the latent transforming growth factor beta binding protein 1 in fibrillin-containing microfibrils in bone cells in vitro and in vivo. J Bone Miner Res 15:68–81

    Article  PubMed  CAS  Google Scholar 

  31. Isogai Z, Ono RN, Ushiro S, Keene DR, Chen Y, Mazzieri R, Charbonneau NL, Reinhardt DP, Rifkin DB, Sakai LY (2003) Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J Biol Chem 278:2750–2757

    Article  PubMed  CAS  Google Scholar 

  32. Raghunath M, Unsold C, Kubitscheck U, Bruckner-Tuderman L, Peters R, Meuli M (1998) The cutaneous microfibrillar apparatus contains latent transforming growth factor-beta binding protein-1 (LTBP-1) and is a repository for latent TGF-beta1. J Invest Dermatol 111:559–564

    Article  PubMed  CAS  Google Scholar 

  33. Koli K, Hyytiainen M, Ryynanen MJ, Keski-Oja J (2005) Sequential deposition of latent TGF-beta binding proteins (LTBPs) during formation of the extracellular matrix in human lung fibroblasts. Exp Cell Res 310:370–382

    Article  PubMed  CAS  Google Scholar 

  34. Unsold C, Hyytiainen M, Bruckner-Tuderman L, Keski-Oja J (2001) Latent TGF-beta binding protein LTBP-1 contains three potential extracellular matrix interacting domains. J Cell Sci 114:187–197

    PubMed  CAS  Google Scholar 

  35. Kantola AK, Keski-Oja J, Koli K (2008) Fibronectin and heparin binding domains of latent TGF-beta binding protein (LTBP)-4 mediate matrix targeting and cell adhesion. Exp Cell Res 314:2488–2500

    Article  PubMed  CAS  Google Scholar 

  36. Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B, Dietz HC 3rd (2008) Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med 358:2787–2795

    Article  PubMed  CAS  Google Scholar 

  37. Moberg K, De Nobele S, Devos D, Goetghebeur E, Segers P, Trachet B, Vervaet C, Renard M, Coucke P, Loeys B, De Paepe A, De Backer J (2011) The Ghent Marfan Trial—a randomized, double-blind placebo controlled trial with losartan in Marfan patients treated with beta-blockers. Int J Cardiol (in press)

  38. Saharinen J, Taipale J, Keski-Oja J (1996) Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J 15:245–253

    PubMed  CAS  Google Scholar 

  39. Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bachinger HP, Sakai LY (2005) The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem 280:27970–27980

    Article  PubMed  CAS  Google Scholar 

  40. Sengle G, Charbonneau NL, Ono RN, Sasaki T, Alvarez J, Keene DR, Bachinger HP, Sakai LY (2008) Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J Biol Chem 283:13874–13888

    Article  PubMed  CAS  Google Scholar 

  41. Sengle G, Ono RN, Lyons KM, Bachinger HP, Sakai LY (2008) A new model for growth factor activation: type II receptors compete with the prodomain for BMP-7. J Mol Biol 381:1025–1039

    Article  PubMed  CAS  Google Scholar 

  42. Charbonneau NL, Carlson EJ, Tufa S, Sengle G, Manalo EC, Carlberg VM, Ramirez F, Keene DR, Sakai LY (2010) In vivo studies of mutant fibrillin-1 microfibrils. J Biol Chem 285:24943–24955

    Article  PubMed  CAS  Google Scholar 

  43. Lin G, Tiedemann K, Vollbrandt T, Peters H, Batge B, Brinckmann J, Reinhardt DP (2002) Homo- and heterotypic fibrillin-1 and -2 interactions constitute the basis for the assembly of microfibrils. J Biol Chem 277:50795–50804

    Article  PubMed  CAS  Google Scholar 

  44. Brinckmann J, Hunzelmann N, Kahle B, Rohwedel J, Kramer J, Gibson MA, Hubmacher D, Reinhardt DP (2010) Enhanced fibrillin-2 expression is a general feature of wound healing and sclerosis: potential alteration of cell attachment and storage of TGF-beta. Lab Invest 90:739–752

    Article  PubMed  CAS  Google Scholar 

  45. Weinbaum JS, Broekelmann TJ, Pierce RA, Werneck CC, Segade F, Craft CS, Knutsen RH, Mecham RP (2008) Deficiency in microfibril-associated glycoprotein-1 leads to complex phenotypes in multiple organ systems. J Biol Chem 283:25533–25543

    Article  PubMed  CAS  Google Scholar 

  46. Zacchigna L, Vecchione C, Notte A, Cordenonsi M, Dupont S, Maretto S, Cifelli G, Ferrari A, Maffei A, Fabbro C, Braghetta P, Marino G, Selvetella G, Aretini A, Colonnese C, Bettarini U, Russo G, Soligo S, Adorno M, Bonaldo P, Volpin D, Piccolo S, Lembo G, Bressan GM (2006) Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell 124:929–942

    Article  PubMed  CAS  Google Scholar 

  47. Ono RN, Sengle G, Charbonneau NL, Carlberg V, Bachinger HP, Sasaki T, Lee-Arteaga S, Zilberberg L, Rifkin DB, Ramirez F, Chu ML, and Sakai LY (2009) LTBPS and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites. J Biol Chem (in press)

  48. Isogai Z, Aspberg A, Keene DR, Ono RN, Reinhardt DP, Sakai LY (2002) Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem 277:4565–4572

    Article  PubMed  CAS  Google Scholar 

  49. Yamaguchi Y (2000) Lecticans: organizers of the brain extracellular matrix. Cell Mol Life Sci 57:276–289

    Article  PubMed  CAS  Google Scholar 

  50. Kuznetsova SA, Issa P, Perruccio EM, Zeng B, Sipes JM, Ward Y, Seyfried NT, Fielder HL, Day AJ, Wight TN, Roberts DD (2006) Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. J Cell Sci 119:4499–4509

    Article  PubMed  CAS  Google Scholar 

  51. Choocheep K, Hatano S, Takagi H, Watanabe H, Kimata K, Kongtawelert P (2010) Versican facilitates chondrocyte differentiation and regulates joint morphogenesis. J Biol Chem (in press)

  52. Faivre L, Dollfus H, Lyonnet S, Alembik Y, Megarbane A, Samples J, Gorlin RJ, Alswaid A, Feingold J, Le Merrer M, Munnich A, Cormier-Daire V (2003) Clinical homogeneity and genetic heterogeneity in Weill–Marchesani syndrome. Am J Med Genet 123A:204–207

    Article  PubMed  Google Scholar 

  53. Dagoneau N, Benoist-Lasselin C, Huber C, Faivre L, Megarbane A, Alswaid A, Dollfus H, Alembik Y, Munnich A, Legeai-Mallet L, Cormier-Daire V (2004) ADAMTS10 mutations in autosomal recessive Weill–Marchesani Syndrome. Am J Hum Genet 75:801–806

    Article  PubMed  CAS  Google Scholar 

  54. Kutz WE, Wang LW, Dagoneau N, Odrcic KJ, Cormier-Daire V, Traboulsi EI, Apte SS (2008) Functional analysis of an ADAMTS10 signal peptide mutation in Weill–Marchesani syndrome demonstrates a long-range effect on secretion of the full-length enzyme. Hum Mutat 29:1425–1434

    Article  PubMed  CAS  Google Scholar 

  55. Faivre L, Gorlin RJ, Wirtz MK, Godfrey M, Dagoneau N, Samples JR, Le Merrer M, Collod-Beroud G, Boileau C, Munnich A, Cormier-Daire V (2003) In frame fibrillin-1 gene deletion in autosomal dominant Weill–Marchesani syndrome. J Med Genet 40:34–36

    Article  PubMed  CAS  Google Scholar 

  56. Sengle G, Tsutsui K, Keene DR, Carlson EJ, Charbonneau NL, Wirtz MK, Samples J, Hayflick SJ, Fessler LI, Fessler JH, Sekiguchi K, and Sakai LY (2010) A novel genetic pathway underlies Weill-Marchesani syndrome. In: 8th international symposium on the Marfan Syndrome and related disorders, pp. 43, Airlie Center, Warrenton, VA, USA

  57. Lonnqvist L, Child A, Kainulainen K, Davidson R, Puhakka L, Peltonen L (1994) A novel mutation of the fibrillin gene causing ectopia lentis. Genomics 19:573–576

    Article  PubMed  CAS  Google Scholar 

  58. Ades LC, Holman KJ, Brett MS, Edwards MJ, Bennetts B (2004) Ectopia lentis phenotypes and the FBN1 gene. Am J Med Genet A 126A:284–289

    Article  PubMed  Google Scholar 

  59. Allali S, Le Goff C, Pressac-Diebold I, Pfennig G, Mahaut C, Dagoneau N, Alanay Y, Brady AF, Crow YJ, Devriendt K, Drouin-Garraud V, Flori E, Genevieve D, Hennekam RC, Hurst J, Krakow D, Le Merrer M, Lichtenbelt KD, Lynch SA, Lyonnet S, Macdermot K, Mansour S, Megarbane A, Santos HG, Splitt M, Superti-Furga A, Unger S, Williams D, Munnich A, Cormier-Daire V (2011) Molecular screening of ADAMTSL2 gene in 33 patients reveals the genetic heterogeneity of geleophysic dysplasia. J Med Genet (in press)

  60. Spranger J, Gilbert EF, Arya S, Hoganson GM, Opitz JM (1984) Geleophysic dysplasia. Am J Med Genet 19:487–499

    Article  PubMed  CAS  Google Scholar 

  61. Le Goff C, Cormier-Daire V (2009) Genetic and molecular aspects of acromelic dysplasia. Pediatr Endocrinol Rev 6:418–423

    PubMed  Google Scholar 

  62. Loeys BL, Gerber EE, Riegert-Johnson D, Iqbal S, Whiteman P, McConnell V, Chillakuri CR, Macaya D, Coucke PJ, De Paepe A, Judge DP, Wigley F, Davis EC, Mardon HJ, Handford P, Keene DR, Sakai LY, Dietz HC (2010) Mutations in fibrillin-1 cause congenital scleroderma: stiff skin syndrome. Sci Transl Med 2:23ra20

    Article  PubMed  CAS  Google Scholar 

  63. Gayraud B, Keene DR, Sakai LY, Ramirez F (2000) New insights into the assembly of extracellular microfibrils from the analysis of the fibrillin 1 mutation in the tight skin mouse. J Cell Biol 150:667–680

    Article  PubMed  CAS  Google Scholar 

  64. Kielty CM, Raghunath M, Siracusa LD, Sherratt MJ, Peters R, Shuttleworth CA, Jimenez SA (1998) The Tight skin mouse: demonstration of mutant fibrillin-1 production and assembly into abnormal microfibrils. J Cell Biol 140:1159–1166

    Article  PubMed  CAS  Google Scholar 

  65. Siracusa LD, McGrath R, Ma Q, Moskow JJ, Manne J, Christner PJ, Buchberg AM, Jimenez SA (1996) A tandem duplication within the fibrillin 1 gene is associated with the mouse tight skin mutation. Genome Res 6:300–313

    Article  PubMed  CAS  Google Scholar 

  66. Apte SS (2009) A disintegrin-like and metalloprotease (reprolysin-type) with thrombospondin type 1 motif (ADAMTS) superfamily: functions and mechanisms. J Biol Chem 284:31493–31497

    Article  PubMed  CAS  Google Scholar 

  67. Huxley-Jones J, Apte SS, Robertson DL, Boot-Handford RP (2005) The characterisation of six ADAMTS proteases in the basal chordate Ciona intestinalis provides new insights into the vertebrate ADAMTS family. Int J Biochem Cell Biol 37:1838–1845

    Article  PubMed  CAS  Google Scholar 

  68. Apte SS (2004) A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. Int J Biochem Cell Biol 36:981–985

    Article  PubMed  CAS  Google Scholar 

  69. Kramerova IA, Kramerov AA, Fessler JH (2003) Alternative splicing of papilin and the diversity of Drosophila extracellular matrix during embryonic morphogenesis. Dev Dyn 226:634–642

    Article  PubMed  CAS  Google Scholar 

  70. Ricketts LM, Dlugosz M, Luther KB, Haltiwanger RS, Majerus EM (2007) O-fucosylation is required for ADAMTS13 secretion. J Biol Chem 282:17014–17023

    Article  PubMed  CAS  Google Scholar 

  71. Wang LW, Dlugosz M, Somerville RP, Raed M, Haltiwanger RS, Apte SS (2007) O-fucosylation of thrombospondin type 1 repeats in ADAMTS-like-1/punctin-1 regulates secretion: implications for the ADAMTS superfamily. J Biol Chem 282:17024–17031

    Article  PubMed  CAS  Google Scholar 

  72. Wang LW, Leonhard-Melief C, Haltiwanger RS, Apte SS (2009) Post-translational modification of thrombospondin type-1 repeats in ADAMTS-like 1/punctin-1 by C-mannosylation of tryptophan. J Biol Chem 284:30004–30015

    Article  PubMed  CAS  Google Scholar 

  73. Li Z, Nardi MA, Li YS, Zhang W, Pan R, Dang S, Yee H, Quartermain D, Jonas S, Karpatkin S (2009) C-terminal ADAMTS-18 fragment induces oxidative platelet fragmentation, dissolves platelet aggregates, and protects against carotid artery occlusion and cerebral stroke. Blood 113:6051–6060

    Article  PubMed  CAS  Google Scholar 

  74. Kashiwagi M, Enghild JJ, Gendron C, Hughes C, Caterson B, Itoh Y, Nagase H (2004) Altered proteolytic activities of ADAMTS-4 expressed by C-terminal processing. J Biol Chem 279:10109–10119

    Article  PubMed  CAS  Google Scholar 

  75. Morales J, Al-Sharif L, Khalil DS, Shinwari JM, Bavi P, Al-Mahrouqi RA, Al-Rajhi A, Alkuraya FS, Meyer BF, Al Tassan N (2009) Homozygous mutations in ADAMTS10 and ADAMTS17 cause lenticular myopia, ectopia lentis, glaucoma, spherophakia, and short stature. Am J Hum Genet 85:558–568

    Article  PubMed  CAS  Google Scholar 

  76. Kuchtey J, Olson LM, Rinkoski T, Mackay EO, Iverson TM, Gelatt KN, Haines JL, Kuchtey RW (2011) Mapping of the disease locus and identification of ADAMTS10 as a candidate gene in a Canine Model of primary open angle glaucoma. PLoS Genet 7:e1001306

    Article  PubMed  CAS  Google Scholar 

  77. Ahram D, Sato TS, Kohilan A, Tayeh M, Chen S, Leal S, Al-Salem M, El-Shanti H (2009) A homozygous mutation in ADAMTSL4 causes autosomal-recessive isolated ectopia lentis. Am J Hum Genet 84:274–278

    Article  PubMed  CAS  Google Scholar 

  78. Aragon-Martin JA, Ahnood D, Charteris DG, Saggar A, Nischal KK, Comeglio P, Chandra A, Child AH, Arno G (2010) Role of ADAMTSL4 mutations in FBN1 mutation-negative ectopia lentis patients. Hum Mutat 31:E1622–E1631

    Article  PubMed  CAS  Google Scholar 

  79. Christensen AE, Fiskerstrand T, Knappskog PM, Boman H, Rodahl E (2010) A novel ADAMTSL4 mutation in autosomal recessive ectopia lentis et pupillae. Invest Ophthalmol Vis Sci 51:6369–6373

    Article  PubMed  Google Scholar 

  80. Greene VB, Stoetzel C, Pelletier V, Perdomo-Trujillo Y, Liebermann L, Marion V, De Korvin H, Boileau C, Dufier JL, Dollfus H (2010) Confirmation of ADAMTSL4 mutations for autosomal recessive isolated bilateral ectopia lentis. Ophthalmic Genet 31:47–51

    Article  PubMed  CAS  Google Scholar 

  81. Neuhann TM, Artelt J, Neuhann TF, Tinschert S, Rump A (2011) A homozygous microdeletion within ADAMTSL4 in patients with isolated ectopia lentis: evidence of a founder mutation. Invest Ophthalmol Vis Sci 52:695–700

    Article  PubMed  CAS  Google Scholar 

  82. Farias FH, Johnson GS, Taylor JF, Giuliano E, Katz ML, Sanders DN, Schnabel RD, McKay SD, Khan S, Gharahkhani P, O’Leary CA, Pettitt L, Forman OP, Boursnell M, McLaughlin B, Ahonen S, Lohi H, Hernandez-Merino E, Gould DJ, Sargan D, Mellersh CS (2010) An ADAMTS17 splice donor site mutation in dogs with primary lens luxation. Invest Ophthalmol Vis Sci 51:4716–4721

    Article  PubMed  Google Scholar 

  83. Curtis R, Barnett KC, Lewis SJ (1983) Clinical and pathological observations concerning the aetiology of primary lens luxation in the dog. Vet Rec 112:238–246

    Article  PubMed  CAS  Google Scholar 

  84. Le Goff C, Morice-Picard F, Dagoneau N, Wang LW, Perrot C, Crow YJ, Bauer F, Flori E, Prost-Squarcioni C, Krakow D, Ge G, Greenspan DS, Bonnet D, Le Merrer M, Munnich A, Apte SS, Cormier-Daire V (2008) ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation. Nat Genet 40:1119–1123

    Article  PubMed  CAS  Google Scholar 

  85. Koo BH, Le Goff C, Jungers KA, Vasanji A, O’Flaherty J, Weyman CM, Apte SS (2007) ADAMTS-like 2 (ADAMTSL2) is a secreted glycoprotein that is widely expressed during mouse embryogenesis and is regulated during skeletal myogenesis. Matrix Biol 26:431–441

    Article  PubMed  CAS  Google Scholar 

  86. Bader HL, Ruhe AL, Wang LW, Wong AK, Walsh KF, Packer RA, Mitelman J, Robertson KR, O’Brien DP, Broman KW, Shelton GD, Apte SS, Neff MW (2010) An ADAMTSL2 founder mutation causes Musladin–Lueke Syndrome, a heritable disorder of beagle dogs, featuring stiff skin and joint contractures. PLoS One 5 (in press)

  87. Kutz WE, Wang LW, Bader HL, Majors AK, Iwata K, Traboulsi EI, Sakai LY, Keene DR, Apte SS (2011) ADAMTS10 protein interacts with fibrillin-1 and promotes its deposition in extracellular matrix of cultured fibroblasts. J Biol Chem 286:17156–17167

    Article  PubMed  CAS  Google Scholar 

  88. Tsutsui K, Manabe RI, Yamada T, Nakano I, Oguri Y, Keene DR, Sengle G, Sakai LY, Sekiguchi K (2010) A disintegrin and metalloproteinase with thrombospondin motifs-like-6 (ADAMTSL-6) is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem 285:4870–4882

    Article  PubMed  CAS  Google Scholar 

  89. Milewicz DM, Pyeritz RE, Crawford ES, Byers PH (1992) Marfan syndrome: defective synthesis, secretion, and extracellular matrix formation of fibrillin by cultured dermal fibroblasts. J Clin Invest 89:79–86

    Article  PubMed  CAS  Google Scholar 

  90. Raghunath M, Putnam EA, Ritty T, Hamstra D, Park ES, Tschodrich-Rotter M, Peters R, Rehemtulla A, Milewicz DM (1999) Carboxy-terminal conversion of profibrillin to fibrillin at a basic site by PACE/furin-like activity required for incorporation in the matrix. J Cell Sci 112(Pt 7):1093–1100

    PubMed  CAS  Google Scholar 

  91. Somerville RP, Jungers KA, Apte SS (2004) ADAMTS10: Discovery and characterization of a novel, widely expressed metalloprotease and its proteolytic activation. J Biol Chem 279:51208–51217

    Article  PubMed  CAS  Google Scholar 

  92. Tiedemann K, Batge B, Muller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276:36035–36042

    Article  PubMed  CAS  Google Scholar 

  93. Kinsey R, Williamson MR, Chaudhry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA, Kielty CM (2008) Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci 121:2696–2704

    Article  PubMed  CAS  Google Scholar 

  94. Sabatier L, Chen D, Fagotto-Kaufmann C, Hubmacher D, McKee MD, Annis DS, Mosher DF, Reinhardt DP (2009) Fibrillin assembly requires fibronectin. Mol Biol Cell 20:846–858

    Article  PubMed  CAS  Google Scholar 

  95. Akiyama M, Takeda S, Kokame K, Takagi J, Miyata T (2009) Crystal structures of the noncatalytic domains of ADAMTS13 reveal multiple discontinuous exosites for von Willebrand factor. Proc Natl Acad Sci USA 106:19274–19279

    Article  PubMed  CAS  Google Scholar 

  96. Shieh HS, Mathis KJ, Williams JM, Hills RL, Wiese JF, Benson TE, Kiefer JR, Marino MH, Carroll JN, Leone JW, Malfait AM, Arner EC, Tortorella MD, Tomasselli A (2008) High resolution crystal structure of the catalytic domain of ADAMTS-5 (aggrecanase-2). J Biol Chem 283:1501–1507

    Article  PubMed  CAS  Google Scholar 

  97. Buchner DA, Meisler MH (2003) TSRC1, a widely expressed gene containing seven thrombospondin type I repeats. Gene 307:23–30

    Article  PubMed  CAS  Google Scholar 

  98. Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez-Otin C (2002) Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283:49–62

    Article  PubMed  CAS  Google Scholar 

  99. Hubmacher D, Reinhardt D (2011) Microfibrils and fibrillin. Springer, Berlin

    Google Scholar 

  100. Gabriel LAR, Wang LW, Bader H, Ho JC, Majors AK, Hollyfield JG, Traboulsi EI, Apte SS (2011) ADAMTSL4, a secreted glycoprotein widely distributed in the eye, binds fibrillin-1 microfibrils and accelerates microfibril biogenesis. Invest Ophthalmol Vis Sci (In press)

Download references

Acknowledgements

This work was supported by awards from the National Institutes of Health (AR53890 and EY021151) and the National Marfan Foundation to S. Apte. We acknowledge the outstanding contributions from our many colleagues in human and animal genetics that provided the basis for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suneel S. Apte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubmacher, D., Apte, S.S. Genetic and functional linkage between ADAMTS superfamily proteins and fibrillin-1: a novel mechanism influencing microfibril assembly and function. Cell. Mol. Life Sci. 68, 3137–3148 (2011). https://doi.org/10.1007/s00018-011-0780-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0780-9

Keywords

Navigation