Skip to main content
Log in

Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Pyramidal neurons have a complex dendritic arbor containing tens of thousands of synapses. In order for the somatic/axonal membrane potential to reach action potential threshold, concurrent activation of multiple excitatory synapses is required. Frequently, instead of a simple algebraic summation of synaptic potentials in the soma, different dendritic compartments contribute to the integration of multiple inputs, thus endowing the neuron with a powerful computational ability. Most pyramidal neurons share common functional properties. However, different and sometimes contrasting dendritic integration rules are also observed. In this review, we focus on the dendritic integration of two neighboring pyramidal neurons in the hippocampus: the well-characterized CA1 and the much less understood CA2. The available data reveal that the dendritic integration of these neurons is markedly different even though they are targeted by common inputs at similar locations along their dendrites. This contrasting dendritic integration results in different routing of information flow and generates different corticohippocampal loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ramon y Cajal S (1995) Histology of the nervous system of man and vertebrates. Oxford University Press, Oxford

    Google Scholar 

  2. Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berl) 190:307–337

    Article  CAS  Google Scholar 

  3. Ramon y Cajal S (1888) Estructura de los centros nerviosos de las aves. Revista Trimestral de Histología Normal y Patológica 1:1–10

    Google Scholar 

  4. Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540

    Article  PubMed  CAS  Google Scholar 

  5. Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895–903

    Article  PubMed  CAS  Google Scholar 

  6. Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31:571–591

    Article  PubMed  CAS  Google Scholar 

  7. Niimi K, Nishimura-Akiyoshi S, Nakashiba T, Itohara S (2007) Monoclonal antibodies discriminating netrin-G1 and netrin-G2 neuronal pathways. J Neuroimmunol 192:99–104

    Article  PubMed  CAS  Google Scholar 

  8. Nishimura-Akiyoshi S, Niimi K, Nakashiba T, Itohara S (2007) Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. Proc Natl Acad Sci U S A 104:14801–14806

    Article  PubMed  Google Scholar 

  9. Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66:560–572

    Article  PubMed  CAS  Google Scholar 

  10. Ramon y Cajal S (1911) Histologie du systeme nerveux. Maloine A. editor. Paris

  11. Lorente de No R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  12. Lauer M, Senitz D (2006) Dendritic excrescences seem to characterize hippocampal CA3 pyramidal neurons in humans. J Neural Transm 113:1469–1475

    Article  PubMed  CAS  Google Scholar 

  13. Paxinos G, Franklin BJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, New York

    Google Scholar 

  14. Ishizuka N, Cowan WM, Amaral DG (1995) A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus. J Comp Neurol 362:17–45

    Article  PubMed  CAS  Google Scholar 

  15. Tamamaki N, Abe K, Nojyo Y (1988) Three-dimensional analysis of the whole axonal arbors originating from single CA2 pyramidal neurons in the rat hippocampus with the aid of a computer graphic technique. Brain Res 452:255–272

    Article  PubMed  CAS  Google Scholar 

  16. Stanfield BB, Cowan WM (1984) An EM autoradiographic study of the hypothalamo-hippocampal projection. Brain Res 309:299–307

    Article  PubMed  CAS  Google Scholar 

  17. Peterson GM, Shurlow CL (1992) Morphological evidence for a substance P projection from medial septum to hippocampus. Peptides 13:509–517

    Article  PubMed  CAS  Google Scholar 

  18. Ochiishi T, Saitoh Y, Yukawa A, Saji M, Ren Y, Shirao T, Miyamoto H, Nakata H, Sekino Y (1999) High level of adenosine A1 receptor-like immunoreactivity in the CA2/CA3a region of the adult rat hippocampus. Neuroscience 93:955–967

    Article  PubMed  CAS  Google Scholar 

  19. Young WS, Li J, Wersinger SR, Palkovits M (2006) The vasopressin 1b receptor is prominent in the hippocampal area CA2 where it is unaffected by restraint stress or adrenalectomy. Neuroscience 143:1031–1039

    Article  PubMed  CAS  Google Scholar 

  20. Phillips T, Makoff A, Brown S, Rees S, Emson P (1997) Localization of mGluR4 protein in the rat cerebral cortex and hippocampus. Neuroreport 8:3349–3354

    Article  PubMed  CAS  Google Scholar 

  21. Tucker MS, Khan I, Fuchs-Young R, Price S, Steininger TL, Greene G, Wainer BH, Rosner MR (1993) Localization of immunoreactive epidermal growth factor receptor in neonatal and adult rat hippocampus. Brain Res 631:65–71

    Article  PubMed  CAS  Google Scholar 

  22. Venkitaramani DV, Paul S, Zhang Y, Kurup P, Ding L, Tressler L, Allen M, Sacca R, Picciotto MR, Lombroso PJ (2009) Knockout of striatal enriched protein tyrosine phosphatase in mice results in increased ERK1/2 phosphorylation. Synapse 63:69–81

    Article  PubMed  CAS  Google Scholar 

  23. Lein ES, Callaway EM, Albright TD, Gage FH (2005) Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. J Comp Neurol 485:1–10

    Article  PubMed  CAS  Google Scholar 

  24. Wyszynski M, Kharazia V, Shanghvi R, Rao A, Beggs AH, Craig AM, Weinberg R, Sheng M (1998) Differential regional expression and ultrastructural localization of alpha-actinin-2, a putative NMDA receptor-anchoring protein, in rat brain. J Neurosci 18:1383–1392

    PubMed  CAS  Google Scholar 

  25. Lee SE, Simons SB, Heldt SA, Zhao M, Schroeder JP, Vellano CP, Cowan DP, Ramineni S, Yates CK, Feng Y, Smith Y, Sweatt JD, Weinshenker D, Ressler KJ, Dudek SM, Hepler JR (2010) RGS14 is a natural suppressor of both synaptic plasticity in CA2 neurons and hippocampal-based learning and memory. Proc Natl Acad Sci U S A 107:16994–16998

    Article  PubMed  CAS  Google Scholar 

  26. Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES (2008) Genomic anatomy of the hippocampus. Neuron 60:1010–1021

    Article  PubMed  CAS  Google Scholar 

  27. Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S (2008) Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 319:1260–1264

    Article  PubMed  CAS  Google Scholar 

  28. Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP, Moser MB, Moser EI (2002) Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–2246

    Article  PubMed  CAS  Google Scholar 

  29. Brun VH, Leutgeb S, Wu HQ, Schwarcz R, Witter MP, Moser EI, Moser MB (2008) Impaired spatial representation in CA1 after lesion of direct input from entorhinal cortex. Neuron 57:290–302

    Article  PubMed  CAS  Google Scholar 

  30. Remondes M, Schuman EM (2004) Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431:699–703

    Article  PubMed  CAS  Google Scholar 

  31. Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    Article  PubMed  CAS  Google Scholar 

  32. Bartesaghi R, Ravasi L (1999) Pyramidal neuron types in field CA2 of the guinea pig. Brain Res Bull 50:263–273

    Article  PubMed  CAS  Google Scholar 

  33. Wittner L, Huberfeld G, Clemenceau S, Eross L, Dezamis E, Entz L, Ulbert I, Baulac M, Freund TF, Magloczky Z, Miles R (2009) The epileptic human hippocampal cornu ammonis 2 region generates spontaneous interictal-like activity in vitro. Brain 132:3032–3046

    Article  PubMed  Google Scholar 

  34. Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363–366

    Article  PubMed  CAS  Google Scholar 

  35. Kath WL (2005) Computational modeling of dendrites. J Neurobiol 64:91–99

    Article  PubMed  Google Scholar 

  36. Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937

    PubMed  CAS  Google Scholar 

  37. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275:209–213

    Article  PubMed  CAS  Google Scholar 

  38. Li XG, Somogyi P, Ylinen A, Buzsaki G (1994) The hippocampal CA3 network: an in vivo intracellular labeling study. J Comp Neurol 339:181–208

    Article  PubMed  CAS  Google Scholar 

  39. Adelmann G, Deller T, Frotscher M (1996) Organization of identified fiber tracts in the rat fimbria-fornix: an anterograde tracing and electron microscopic study. Anat Embryol (Berl) 193:481–493

    Article  CAS  Google Scholar 

  40. Ishizuka N, Weber J, Amaral DG (1990) Organization of intrahippocampal projections originating from CA3 pyramidal cells in the rat. J Comp Neurol 295:580–623

    Article  PubMed  CAS  Google Scholar 

  41. Pan WX, McNaughton N (2004) The supramammillary area: its organization, functions and relationship to the hippocampus. Prog Neurobiol 74:127–166

    Article  PubMed  Google Scholar 

  42. Borhegyi Z, Leranth C (1997) Distinct substance P- and calretinin-containing projections from the supramammillary area to the hippocampus in rats; a species difference between rats and monkeys. Exp Brain Res 115:369–374

    Article  PubMed  CAS  Google Scholar 

  43. Kiss J, Csaki A, Bokor H, Shanabrough M, Leranth C (2000) The supramammillo-hippocampal and supramammillo-septal glutamatergic/aspartatergic projections in the rat: a combined [3H]D-aspartate autoradiographic and immunohistochemical study. Neuroscience 97:657–669

    Article  PubMed  CAS  Google Scholar 

  44. Haglund L, Swanson LW, Kohler C (1984) The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol 229:171–185

    Article  PubMed  CAS  Google Scholar 

  45. Magloczky Z, Acsady L, Freund TF (1994) Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus 4:322–334

    Article  PubMed  CAS  Google Scholar 

  46. Pan WX, McNaughton N (2002) The role of the medial supramammillary nucleus in the control of hippocampal theta activity and behaviour in rats. Eur J Neurosci 16:1797–1809

    Article  PubMed  Google Scholar 

  47. Bartesaghi R, Gessi T (2004) Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys. Hippocampus 14:948–963

    Article  PubMed  Google Scholar 

  48. Bartesaghi R, Migliore M, Gessi T (2006) Input-output relations in the entorhinal cortex-dentate-hippocampal system: evidence for a non-linear transfer of signals. Neuroscience 142:247–265

    Article  PubMed  CAS  Google Scholar 

  49. Yeckel MF, Berger TW (1995) Monosynaptic excitation of hippocampal CA1 pyramidal cells by afferents from the entorhinal cortex. Hippocampus 5:108–114

    Article  PubMed  CAS  Google Scholar 

  50. Golding NL, Mickus TJ, Katz Y, Kath WL, Spruston N (2005) Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol 568:69–82

    Article  PubMed  CAS  Google Scholar 

  51. Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1:181–190

    Article  PubMed  CAS  Google Scholar 

  52. Gulledge AT, Kampa BM, Stuart GJ (2005) Synaptic integration in dendritic trees. J Neurobiol 64:75–90

    Article  PubMed  CAS  Google Scholar 

  53. Lorincz A, Notomi T, Tamas G, Shigemoto R, Nusser Z (2002) Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat Neurosci 5:1185–1193

    Article  PubMed  Google Scholar 

  54. Magee JC (1999) Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat Neurosci 2:508–514

    Article  PubMed  CAS  Google Scholar 

  55. George MS, Abbott LF, Siegelbaum SA (2009) HCN hyperpolarization-activated cation channels inhibit EPSPs by interactions with M-type K(+) channels. Nat Neurosci 12:577–584

    Article  PubMed  CAS  Google Scholar 

  56. Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471:241–276

    Article  PubMed  CAS  Google Scholar 

  57. Santoro B, Wainger BJ, Siegelbaum SA (2004) Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J Neurosci 24:10750–10762

    Article  PubMed  CAS  Google Scholar 

  58. Zhao M, Choi YS, Obrietan K, Dudek SM (2007) Synaptic plasticity (and the lack thereof) in hippocampal CA2 neurons. J Neurosci 27:12025–12032

    Article  PubMed  CAS  Google Scholar 

  59. Gomez-Di Cesare CM, Smith KL, Rice FL, Swann JW (1997) Axonal remodeling during postnatal maturation of CA3 hippocampal pyramidal neurons. J Comp Neurol 384:165–180

    Article  PubMed  CAS  Google Scholar 

  60. Wittner L, Henze DA, Zaborszky L, Buzsaki G (2007) Three-dimensional reconstruction of the axon arbor of a CA3 pyramidal cell recorded and filled in vivo. Brain Struct Funct 212:75–83

    Article  PubMed  Google Scholar 

  61. Konorski J (1948) Conditioned reflexes and neuron organization. Cambridge University Press, Cambridge

    Google Scholar 

  62. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  63. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    PubMed  CAS  Google Scholar 

  64. Ahmed MS, Siegelbaum SA (2009) Recruitment of N-type Ca(2+) channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron 63:372–385

    Article  PubMed  CAS  Google Scholar 

  65. Colbert CM, Levy WB (1993) Long-term potentiation of perforant path synapses in hippocampal CA1 in vitro. Brain Res 606:87–91

    Article  PubMed  CAS  Google Scholar 

  66. Remondes M, Schuman EM (2003) Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammonic-CA1 synapse. Learn Mem 10:247–252

    Article  PubMed  Google Scholar 

  67. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  PubMed  CAS  Google Scholar 

  68. Zakharenko SS, Patterson SL, Dragatsis I, Zeitlin SO, Siegelbaum SA, Kandel ER, Morozov A (2003) Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses. Neuron 39:975–990

    Article  PubMed  CAS  Google Scholar 

  69. Enoki R, Hu YL, Hamilton D, Fine A (2009) Expression of long-term plasticity at individual synapses in hippocampus is graded, bidirectional, and mainly presynaptic: optical quantal analysis. Neuron 62:242–253

    Article  PubMed  CAS  Google Scholar 

  70. Bolshakov VY, Siegelbaum SA (1995) Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269:1730–1734

    Article  PubMed  CAS  Google Scholar 

  71. Pavlidis P, Montgomery J, Madison DV (2000) Presynaptic protein kinase activity supports long-term potentiation at synapses between individual hippocampal neurons. J Neurosci 20:4497–4505

    PubMed  CAS  Google Scholar 

  72. Simons SB, Escobedo Y, Yasuda R, Dudek SM (2009) Regional differences in hippocampal calcium handling provide a cellular mechanism for limiting plasticity. Proc Natl Acad Sci U S A 106:14080–14084

    Article  PubMed  CAS  Google Scholar 

  73. Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B, Gibbs E, Vronskaya S, Buzsaki G, Siegelbaum SA, Kandel ER, Morozov A (2004) A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119:719–732

    PubMed  CAS  Google Scholar 

  74. Maccaferri G, Lacaille JC (2003) Interneuron Diversity series: Hippocampal interneuron classifications–making things as simple as possible, not simpler. Trends Neurosci 26:564–571

    Article  PubMed  CAS  Google Scholar 

  75. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  76. Andrasfalvy BK, Mody I (2006) Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons. J Physiol 576:191–196

    Article  PubMed  CAS  Google Scholar 

  77. Benes FM (1999) Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry 46:589–599

    Article  PubMed  CAS  Google Scholar 

  78. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97

    Article  PubMed  CAS  Google Scholar 

  79. Andrioli A, Alonso-Nanclares L, Arellano JI, DeFelipe J (2007) Quantitative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience 149:131–143

    Article  PubMed  CAS  Google Scholar 

  80. Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368

    PubMed  CAS  Google Scholar 

  81. Mercer A, Eastlake K, Trigg HL, Thomson AM (2010) Local circuitry involving parvalbumin-positive basket cells in the CA2 region of the hippocampus. Hippocampus. doi:10.1002/hipo.20841

  82. Pouille F, Scanziani M (2004) Routing of spike series by dynamic circuits in the hippocampus. Nature 429:717–723

    Article  PubMed  CAS  Google Scholar 

  83. Ormond J, Woodin MA (2009) Disinhibition mediates a form of hippocampal long-term potentiation in area CA1. PLoS One 4:e7224

    Article  PubMed  Google Scholar 

  84. Empson RM, Heinemann U (1995) Perforant path connections to area CA1 are predominantly inhibitory in the rat hippocampal-entorhinal cortex combined slice preparation. Hippocampus 5:104–107

    Article  PubMed  CAS  Google Scholar 

  85. Empson RM, Heinemann U (1995) The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J Physiol 484:707–720

    PubMed  CAS  Google Scholar 

  86. Wigstrom H, Gustafsson B (1985) Facilitation of hippocampal long-lasting potentiation by GABA antagonists. Acta Physiol Scand 125:159–172

    Article  PubMed  CAS  Google Scholar 

  87. Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–76

    Article  PubMed  CAS  Google Scholar 

  88. Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592

    Article  PubMed  CAS  Google Scholar 

  89. Chevaleyre V, Castillo PE (2003) Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 38:461–472

    Article  PubMed  CAS  Google Scholar 

  90. Carlson G, Wang Y, Alger BE (2002) Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat Neurosci 5:723–724

    PubMed  CAS  Google Scholar 

  91. Chevaleyre V, Castillo PE (2004) Endocannabinoid-mediated metaplasticity in the hippocampus. Neuron 43:871–881

    Article  PubMed  CAS  Google Scholar 

  92. Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8:1667–1676

    Article  PubMed  CAS  Google Scholar 

  93. Levy WB, Desmond NL, Zhang DX (1998) Perforant path activation modulates the induction of long-term potentiation of the schaffer collateral–hippocampal CA1 response: theoretical and experimental analyses. Learn Mem 4:510–518

    Article  PubMed  CAS  Google Scholar 

  94. Remondes M, Schuman EM (2002) Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons. Nature 416:736–740

    Article  PubMed  CAS  Google Scholar 

  95. Dudman JT, Tsay D, Siegelbaum SA (2007) A role for synaptic inputs at distal dendrites: instructive signals for hippocampal long-term plasticity. Neuron 56:866–879

    Article  PubMed  CAS  Google Scholar 

  96. Izumi Y, Zorumski CF (2008) Direct cortical inputs erase long-term potentiation at Schaffer collateral synapses. J Neurosci 28:9557–9563

    Article  PubMed  CAS  Google Scholar 

  97. Sekino Y, Obata K, Tanifuji M, Mizuno M, Murayama J (1997) Delayed signal propagation via CA2 in rat hippocampal slices revealed by optical recording. J Neurophysiol 78:1662–1668

    PubMed  CAS  Google Scholar 

  98. Nakashiba T, Buhl DL, McHugh TJ, Tonegawa S (2009) Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62:781–787

    Article  PubMed  CAS  Google Scholar 

  99. Fischer Y (2004) The hippocampal intrinsic network oscillator. J Physiol 554:156–174

    Article  PubMed  CAS  Google Scholar 

  100. Wong RK, Traub RD (1983) Synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J Neurophysiol 49:442–458

    PubMed  CAS  Google Scholar 

  101. DeVito LM, Konigsberg R, Lykken C, Sauvage M, Young WS 3rd, Eichenbaum H (2009) Vasopressin 1b receptor knock-out impairs memory for temporal order. J Neurosci 29:2676–2683

    Article  PubMed  CAS  Google Scholar 

  102. Samuel W, Masliah E, Brush DE, Garcia-Munoz M, Patino P, Young SJ, Groves PM (1997) Lesions in the dentate hilum and CA2/CA3 regions of the rat hippocampus produce cognitive deficits that correlate with site-specific glial activation. Neurobiol Learn Mem 68:103–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivien Chevaleyre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piskorowski, R.A., Chevaleyre, V. Synaptic integration by different dendritic compartments of hippocampal CA1 and CA2 pyramidal neurons. Cell. Mol. Life Sci. 69, 75–88 (2012). https://doi.org/10.1007/s00018-011-0769-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0769-4

Keywords

Navigation