Skip to main content
Log in

An evolutionarily conserved mechanism for presynaptic trapping

  • Visions & Reflections (Minireview)
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Presynaptic differentiation takes place over three interrelated acts involving the biogenesis and trafficking of molecular complexes of active zone material, the “trapping” or stabilization of active zone sites, and the subsequent development of mature synapses. Although the identities of proteins involved with establishing presynaptic specializations have been increasingly delineated, the exact functional mechanisms by which the active zone is assembled remain poorly understood. Here, we discuss a theoretical model for how the trapping stage of presynaptic differentiation might occur in developing neurons. We suggest that subsets of active zone proteins containing polyglutamine domains undergo concentration-dependent prion-like conversions as they accumulate at the plasma membrane. This conversion might serve to aggregate the proteins into a singular structure, which is then able to recruit scaffolding agents necessary for regulated synaptic transmission. A brief informatics analysis in support of this ‘Q’ assembly hypothesis—across commonly used models of synaptogenesis—is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Si K, Lindquist S, Kandel ER (2003) A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 115:879–891

    Article  CAS  PubMed  Google Scholar 

  2. Shorter J, Lindquist S (2005) Prions as adaptive conduits of memory and inheritance. Nat Rev Genet 6:435–450

    Article  CAS  PubMed  Google Scholar 

  3. tom Dieck S, Sanmarti-Vila L, Langnaese K, Richter K, Kindler S, Soyke A, Wex H, Smalla KH, Kämpf U, Fränzer JT, Stumm M, Garner CC, Gundelfinger ED (1998) Bassoon, a novel zincfinger CAG/glutamine-repeat protein selectively localized at the active zone of presynaptic nerve terminals. J Cell Biol 142:499–509

    Article  CAS  PubMed  Google Scholar 

  4. Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE, Garner CC (2001) Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 29:131–143

    Article  CAS  PubMed  Google Scholar 

  5. Fujimoto K, Shibasaki T, Yokoi N, Kashima Y, Matsumoto M, Sasaki T, Tajima N, Iwanaga T, Seino S (2002) Piccolo, a Ca2+ sensor in pancreatic beta-cells. Involvement of cAMP-GEFII.Rim2.Piccolo complex in cAMP-dependent exocytosis. J Biol Chem 277:50497–50502

    Article  CAS  PubMed  Google Scholar 

  6. Fenster SD, Kessels MM, Qualmann B, Chung WJ, Nash J, Gundelfinger ED, Garner CC (2003) Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 278:20268–20277

    Article  CAS  PubMed  Google Scholar 

  7. Dresbach T, Torres V, Wittenmayer N, Altrock WD, Zamorano P, Zuschratter W, Nawrotzki R, Ziv NE, Garner CC, Gundelfinger ED (2006) Assembly of active zone precursor vesicles: obligatory trafficking of presynaptic cytomatrix proteins Bassoon and Piccolo via a trans-Golgi compartment. J Biol Chem 281:6038–6047

    Article  CAS  PubMed  Google Scholar 

  8. Jose M, Nair DK, Altrock WD, Dresbach T, Gundelfinger ED, Zuschratter W (2008) Investigating interactions mediated by the presynaptic protein bassoon in living cells by Foerster’s resonance energy transfer and fluorescence lifetime imaging microscopy. Biophys J 94:1483–1496

    Article  CAS  PubMed  Google Scholar 

  9. Dresbach T, Hempelmann A, Spilker C, tom Dieck S, Altrock WD, Zuschratter W, Garner CC, Gundelfinger ED (2003) Functional regions of the presynaptic cytomatrix protein bassoon: significance for synaptic targeting and cytomatrix anchoring. Mol Cell Neurosci 23:279–291

    Article  CAS  PubMed  Google Scholar 

  10. Altrock WD, tom Dieck S, Sokolov M, Meyer AC, Sigler A, Brakebusch C, Fässler R, Richter K, Boeckers TM, Potschka H, Brandt C, Löscher W, Grimberg D, Dresbach T, Hempelmann A, Hassan H, Balschun D, Frey JU, Brandstätter JH, Garner CC, Rosenmund C, Gundelfinger ED (2003) Functional inactivation of a fraction of excitatory synapses in mice deficient for the active zone protein bassoon. Neuron 37:787–800

    Article  CAS  PubMed  Google Scholar 

  11. Butz S, Okamoto M, Südhof TC (1998) A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 94:773–782

    Article  CAS  PubMed  Google Scholar 

  12. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS (1996) Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 84:757–767

    Article  CAS  PubMed  Google Scholar 

  13. Yanay C, Morpurgo N, Linial M (2008) Evolution of insect proteomes: insights into synapse organization and synaptic vesicle life cycle. Genome Biol 9:R27

    Article  PubMed  Google Scholar 

  14. Wang Y, Südhof TC (2003) Genomic definition of RIM proteins: evolutionary amplification of a family of synaptic regulatory proteins. Genomics 81:126–137

    Article  CAS  PubMed  Google Scholar 

  15. Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW (1999) Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 147:151–162

    Article  CAS  PubMed  Google Scholar 

  16. Dick O, tom Dieck S, Altrock WD, Ammermüller J, Weiler R, Garner CC, Gundelfinger ED, Brandstätter JH (2003) The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37:775–786

    Article  CAS  PubMed  Google Scholar 

  17. Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844

    Article  CAS  PubMed  Google Scholar 

  18. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054

    Article  CAS  PubMed  Google Scholar 

  19. Fukuda M (2004) Alternative splicing in the first alpha-helical region of the Rab-binding domain of Rim regulates Rab3A binding activity: is Rim a Rab3 effector protein during evolution? Genes Cells 9:831–842

    Article  CAS  PubMed  Google Scholar 

  20. Nieratschker V, Schubert A, Jauch M, Bock N, Bucher D, Dippacher S, Krohne G, Asan E, Buchner S, Buchner E (2009) Bruchpilot in ribbon-like axonal agglomerates, behavioral defects, and early death in SRPK79D kinase mutants of Drosophila. PLoS Genet 5:e1000700

    Article  PubMed  Google Scholar 

  21. Zhen M, Jin Y (1999) The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Nature 401:371–375

    CAS  PubMed  Google Scholar 

  22. Patel MR, Lehrman EK, Poon VY, Crump JG, Zhen M, Bargmann CI, Shen K (2006) Hierarchical assembly of presynaptic components in defined C. elegans synapses. Nat Neurosci 9:1488–1498

    Article  CAS  PubMed  Google Scholar 

  23. Fouquet W, Owald D, Wichmann C, Mertel S, Depner H, Dyba M, Hallermann S, Kittel RJ, Eimer S, Sigrist SJ (2009) Maturation of active zone assembly by Drosophila Bruchpilot. J Cell Biol 186:129–145

    CAS  PubMed  Google Scholar 

  24. Yeh E, Kawano T, Weimer RM, Bessereau JL, Zhen M (2005) Identification of genes involved in synaptogenesis using a fluorescent active zone marker in Caenorhabditis elegans. J Neurosci 25:3833–3841

    Article  CAS  PubMed  Google Scholar 

  25. Tao-Cheng JH (2006) Activity-related redistribution of presynaptic proteins at the active zone. Neuroscience 141:1217–1224

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by La Universidad de Antofagasta (Dirección de Investigacion, #1314, #1315) and El Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT #1070462).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Fernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, F., Torres, V. & Zamorano, P. An evolutionarily conserved mechanism for presynaptic trapping. Cell. Mol. Life Sci. 67, 1751–1754 (2010). https://doi.org/10.1007/s00018-010-0343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0343-5

Keywords

Navigation