Skip to main content
Log in

The human α2-plasmin inhibitor: functional characterization of the unique plasmin(ogen)-binding region

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The human α2-plasmin inhibitor (A2PI) possesses unique N- and C-terminal extensions that significantly influence its biological activities. The C-terminal segment, A2PIC (Asn398-Lys452), contains six lysines thought to be involved in the binding to lysine-binding sites in the kringle domains of human plasminogen, of which four (Lys422, Lys429, Lys436, Lys452) are completely and two (Lys406, Lys415) are partially conserved. Multiple Lys to Ala mutants of A2PIC were expressed in Escherichia coli and used in intrinsic fluorescence titrations with kringle domains K1, K4, K4 + 5, and K1 + 2 + 3 of human plasminogen. We were able to identify the C-terminal Lys452 as the main binding partner in recombinant A2PIC (rA2PIC) constructs with isolated kringles. We could show a cooperative, zipper-like enhancement of the interaction between C-terminal Lys452 and internal Lys436 of rA2PIC and isolated K1 + 2 + 3, whereas the other internal lysine residues contribute only to a minor extent to the binding process. Sulfated Tyr445 in the unique C-terminal segment revealed no influence on the binding affinity to kringle domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

6-AHA:

6-Aminohexanoic acid

A2PI:

Human α2-plasmin inhibitor

A2PIC:

C-terminal moiety of A2PI (Asn398-Lys452)

rA2PIC:

Recombinant A2PIC (A2PIC/Pro399Ala)

FXa :

Activated coagulation factor X

His-tag:

Peptide MNHKVH6MELGTIEGR

K1:

Kringle 1 of Pgn (Cys84-Cys162), generated as rK1 (Lys78-Glu164)

K2:

Kringle 2 of Pgn (Cys166-Cys243), generated as rK2 (Cys162Thr/Glu163Ser/Glu164-Thr244/Cys169Gly)

K3:

Kringle 3 of Pgn (Cys256-Cys333), generated as rK3 (Thr253-Ser335/Cys297Ser)

rK3mut:

Mutated K3 domain of Pgn (rK3/Lys311Asp)

K4:

Kringle 4 of Pgn (Cys358-Cys435), generated as fragment Val355-Ala440 of Pgn

K5:

Kringle 5 of Pgn (Cys462-Cys541), generated as rK5 (Thr456-Ala543, Pro457Ala)

K1–3:

Kringles 1–3 of Pgn (Cys84-Cys333), generated as fragment Tyr80-Val338 of Pgn

K4–5:

Kringles 4–5 of Pgn (Cys358-Cys541), generated as rK4–5 (Val355-Phe546)

LB Broth:

Luria–Bertani Broth

LBS:

Lysine-binding site

PAN:

Plasminogen N-terminal domain

Pgn:

Human plasminogen

Plm:

Human plasmin

RCL:

Reactive center loop

Serpin:

Serine protease inhibitor

t-AMCHA:

trans-4-(Aminomethyl)cyclohexanecarboxylic acid

References

  1. Lijnen HR, Wiman B, Collen D (1982) Partial primary structure of human alpha 2-antiplasmin-homology with other plasma protease inhibitors. Thromb Haemost 48:311–314

    CAS  PubMed  Google Scholar 

  2. Collen D (1976) Identification and some properties of a new fast-reacting plasmin inhibitor in human plasma. Eur J Biochem 69:209–216

    Article  CAS  PubMed  Google Scholar 

  3. Moroi M, Aoki N (1976) Isolation and characterization of α2-plasmin inhibitor from human plasma. J Biol Chem 251:5956–5965

    CAS  PubMed  Google Scholar 

  4. Müllertz S, Clemmensen I (1976) The primary inhibitor of plasmin in human plasma. Biochem J 159:545–553

    PubMed  Google Scholar 

  5. Wiman B, Collen D (1977) Purification and characterization of human antiplasmin, the fast-acting plasmin inhibitor in plasma. Eur J Biochem 78:19–26

    Article  CAS  PubMed  Google Scholar 

  6. Sumi Y, Ichikawa Y, Nakamura Y, Miura O, Aoki N (1989) Expression and characterization of Pro α2-plasmin inhibitor. J Biochem 106:703–707

    CAS  PubMed  Google Scholar 

  7. Saito H, Goodnough LT, Knowles BB, Aden DP (1982) Synthesis and secretion of α2-plasmin inhibitor by established human liver cell lines. Proc Natl Acad Sci 79:5684–5687

    Article  CAS  PubMed  Google Scholar 

  8. Locher M (2004) Strukturelle und funktionelle Untersuchungen am α2-Plasmininhibitor. Inauguraldissertation, Doctoral Dissertation, University of Bern, Switzerland

  9. Ries M, Easton RL, Longstaff C, Zenker M, Morris HR, Dell A, Gaffney PJ (2002) Differences between neonates and adults in carbohydrate sequences and reaction kinetics of plasmin and α2-antiplasmin. Thromb Res 105:247–256

    Article  CAS  PubMed  Google Scholar 

  10. Lee KN, Jackson KW, Christiansen VJ, Chung KH, McKee PA (2004) A novel plasma proteinase potentiates α2-antiplasmin inhibition of fibrin digestion. Blood 103:3783–3788

    Article  CAS  PubMed  Google Scholar 

  11. Koyama T, Koike Y, Toyota S, Miyagi F, Suzuki N, Aoki N (1994) Different NH2-terminal form with 12 additional residues of α2-plasmin inhibitor from human plasma and culture media of Hep G2 cells. Biochem Biophys Res Commun 200:417–422

    Article  CAS  PubMed  Google Scholar 

  12. Tone M, Kikuno R, Kume-Iwaki A, Hashimoto-Gotoh T (1987) Structure of human α2-plasmin inhibitor deduced from the cDNA sequence. J Biochem 102:1033–1041

    CAS  PubMed  Google Scholar 

  13. Holmes WE, Nelles L, Lijnen HR, Collen D (1987) Primary structure of human α2-antiplasmin, a serine protease inhibitor (serpin). J Biol Chem 262:1659–1664

    CAS  PubMed  Google Scholar 

  14. Christensen S, Valnickova Z, Thøgersen IB, Olsen EH, Enghild JJ (1997) Assignment of a single disulphide bridge in human alpha2-antiplasmin: implications for the structural and functional properties. Biochem J 323:847–852

    CAS  PubMed  Google Scholar 

  15. Hortin G, Fok KF, Toren PC, Strauss AW (1987) Sulfation of a tyrosine residue in the plasmin-binding domain of α2-antiplasmin. J Biol Chem 262:3082–3085

    CAS  PubMed  Google Scholar 

  16. Kimura S, Aoki N (1986) Cross-linking site in fibrinogen for α2-plasmin inhibitor. J Biol Chem 261:15591–15595

    CAS  PubMed  Google Scholar 

  17. Sakata Y, Aoki N (1982) Significance of cross-linking of α2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest 69:536–542

    Article  CAS  PubMed  Google Scholar 

  18. Frank PS, Douglas JT, Locher M, Llinás M, Schaller J (2003) Structural/functional characterization of the α2-plasmin inhibitor C-terminal peptide. Biochemistry 42:1078–1085

    Article  CAS  PubMed  Google Scholar 

  19. Wiman B, Lijnen HR, Collen D (1979) On the specific interaction between the lysine-binding sites in plasmin and complementary sites in alpha2-antiplasmin and in fibrinogen. Biochim Biophys Acta 579:142–154

    CAS  PubMed  Google Scholar 

  20. Sasaki T, Morita T, Iwanaga S (1986) Identification of the plasminogen-binding site of human alpha 2-plasmin inhibitor. J Biochem 99:1699–1705

    CAS  PubMed  Google Scholar 

  21. Hortin GL, Gibson BL, Fok KF (1988) Alpha 2-antiplasmin’s carboxy-terminal lysine residue is a major site of interaction with plasmin. Biochem Biophys Res Commun 155:591–596

    Article  CAS  PubMed  Google Scholar 

  22. Law RH, Sofian T, Kan WT, Horvath AJ, Hitchen CR, Langendorf CG, Buckle AM, Whisstock JC, Coughlin PB (2008) X-ray crystal structure of the fibrinolysis inhibitor α2-antiplasmin. Blood 111:2049–2052

    Article  CAS  PubMed  Google Scholar 

  23. Raum D, Marcus D, Alper CA, Levey R, Taylor PD, Starzl TE (1980) Synthesis of human plasminogen by the liver. Science 208:1036–1037

    Article  CAS  PubMed  Google Scholar 

  24. Tordai H, Bányai L, Patthy L (1999) The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. FEBS Lett 461:63–67

    Article  CAS  PubMed  Google Scholar 

  25. Sottrup-Jensen L, Claeys H, Zajdel M, Petersen TE, Magnusson S (1978) In: Davidson JF, Rowan RM, Samama MM, Desnoyers PC (eds) Progress in chemical fibrinolysis and thrombolysis, vol 3. Raven Press, New York, pp 191-209

  26. Wang X, Lin X, Loy JA, Tang J, Zhang XC (1998) Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281:1662–1665

    Article  CAS  PubMed  Google Scholar 

  27. Ponting CP, Marshall JM, Cederholm-Williams SA (1992) Plasminogen: a structural review. Blood Coagul Fibrinolysis 3:605–614

    Article  CAS  PubMed  Google Scholar 

  28. Christensen U, Clemmensen I (1977) Kinetic properties of the primary inhibitor of plasmin from human plasma. Biochem J 163:389–391

    CAS  PubMed  Google Scholar 

  29. Wiman B, Collen D (1978) On the kinetics of the reaction between human antiplasmin and plasmin. Eur J Biochem 84:573–578

    Article  CAS  PubMed  Google Scholar 

  30. Shieh B-H, Travis J (1987) The reactive site of human α2-antiplasmin. J Biol Chem 262:6055–6059

    CAS  PubMed  Google Scholar 

  31. Wiman B, Boman L, Collen D (1978) On the kinetics of the reaction between human antiplasmin and a low-molecular-weight form of plasmin. Eur J Biochem 87:143–146

    Article  CAS  PubMed  Google Scholar 

  32. Wiman B, Collen D (1979) On the mechanism of the reaction between human alpha 2-antiplasmin and plasmin. J Biol Chem 254:9291–9297

    CAS  PubMed  Google Scholar 

  33. Kluft C, Los P, Jie AF, van Hinsbergh VW, Vellenga E, Jespersen J, Henny CP (1986) The mutual relationship between the two molecular forms of the major fibrinolysis inhibitor alpha-2-antiplasmin in blood. Blood 67:616–622

    CAS  PubMed  Google Scholar 

  34. Clemmensen I, Thorsen S, Müllertz S, Petersen LC (1981) Properties of three different molecular forms of the α2plasmin inhibitor. Eur J Biochem 120:105–112

    Article  CAS  PubMed  Google Scholar 

  35. Hortin GL, Trimpe BL, Fok KF (1989) Plasmin’s peptide-binding specificity: characterization of ligand sites in α2-antiplasmin. Thromb Res 54:621–632

    Article  CAS  PubMed  Google Scholar 

  36. Wang H, Yu A, Wiman B, Pap S (2003) Identification of amino acids in antiplasmin involved in its noncovalent ‘lysine-binding-site’-dependent interaction with plasmin. Eur J Biochem 270:2023–2029

    Article  CAS  PubMed  Google Scholar 

  37. Wang H, Karlsson A, Sjöström I, Wiman B (2006) The interaction between plasminogen and antiplasmin variants as studied by surface plasmon resonance. Biochim Biophys Acta 1764:1730–1734

    CAS  PubMed  Google Scholar 

  38. Brunisholz R, Lerch P, Rickli EE (1979) Structural comparison between human, porcine and bovine plasminogen. In: Neri Serneri GG, Prentice CRM (eds) Haemostasis and thrombosis, vol 15. Academic press, London, pp 757–761

    Google Scholar 

  39. Novy R, Drott D, Yaeger K, Mierendorf R (2001) Overcoming the codon bias of E. coli for enhanced protein expression. inNovations 12:1–3

    Google Scholar 

  40. Qing G, Ma L-C, Khorchid A, Swapna GVT, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22:877–882

    Article  CAS  PubMed  Google Scholar 

  41. Bromfield KM, Quinsey NS, Duggan PJ, Pike RN (2006) Approaches to selective peptidic inhibitors of factor Xa. Chem Biol Drug Des 68:11–19

    Article  CAS  PubMed  Google Scholar 

  42. Ludeman JP, Pike RN, Bromfield KM, Duggan PJ, Cianci J, Le Bonniec B, Whisstock JC, Bottomley SP (2003) Determination of the P1′, P2′ and P3′ subsite-specificity of factor Xa. Int J Biochem Cell Biol 35:221–225

    Article  CAS  PubMed  Google Scholar 

  43. Sletta H, Tøndervik A, Hakvåg S, Vee Aune TE, Nedal A, Aune R, Evensen G, Valla S, Ellingsen TE, Brautaset T (2007) The presence of N-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of Escherichia coli. Appl Environ Microbiol 73:906–912

    Article  CAS  PubMed  Google Scholar 

  44. Marti DN, Hu C-K, An SSA, von Haller P, Schaller J, Llinás M (1997) Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR. Biochemistry 36:11591–11604

    Article  CAS  PubMed  Google Scholar 

  45. Marti D, Schaller J, Ochensberger B, Rickli E (1994) Expression, purification and characterization of the recombinant kringle 2 and kringle 3 domains of human plasminogen and analysis of their binding affinity for ω-aminocarboxylic acids. Eur J Biochem 219:455–462

    Article  CAS  PubMed  Google Scholar 

  46. Douglas JT, von Haller PD, Gehrmann M, Llinás M, Schaller J (2002) The two-domain NK1 fragment of plasminogen: folding, ligand binding, and thermal stability profile. Biochemistry 41:3302–3310

    Article  CAS  PubMed  Google Scholar 

  47. Chang J-Y, Knecht R (1991) Direct analysis of the disulfide content of proteins: methods for monitoring the stability and refolding process of cystine-containing proteins. Anal Biochem 197:52–58

    Article  CAS  PubMed  Google Scholar 

  48. Bidlingmeyer BA, Cohen SA, Tarvin TL (1984) Rapid analysis of amino acids using pre-column derivatization. J Chromatogr 336:93–104

    Article  CAS  PubMed  Google Scholar 

  49. Menhart N, Sehl LC, Kelley RF, Castellino FJ (1991) Construction, expression, and purification of recombinant kringle 1 of human plasminogen and analysis of its interaction with ω-amino acids. Biochemistry 30:1948–1957

    Article  CAS  PubMed  Google Scholar 

  50. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  51. Lejon S (2008) Human α2-plasmin inhibitor, a serpin with unique structural and functional properties. Doctoral Dissertation, University of Bern, Switzerland

  52. Rejante MR (1992) Proton NMR studies on the structure and ligand-binding properties of human plasminogen kringles 1 and 4. Doctoral Dissertation, Carnegie Mellon University, Pittsburgh, PA

  53. Petros AM, Ramesh V, Llinás M (1989) 1H NMR studies of aliphatic ligand binding to human plasminogen kringle 4. Biochemistry 28:1368–1376

    Article  CAS  PubMed  Google Scholar 

  54. Thewes T, Constantine K, Byeon I-JL, Llinás M (1990) Ligand interactions with the kringle 5 domain of plasminogen. JBC 265:3906–3915

    CAS  Google Scholar 

  55. Abad MC, Arni RK, Grella DK, Castellino FJ, Tulinsky A, Geiger JH (2002) The X-ray crystallographic structure of the angiogenesis inhibitor angiostatin. J Mol Biol 318:1009–1017

    Article  CAS  PubMed  Google Scholar 

  56. Sofian T, Horvath A, Hitchen C, Forsyth S, Coughlin P (2008) Antibody to the C-terminal extension of antiplasmin enhances fibrinolysis. In: Proceedings of the 5th international symposium on serpin biology, structure and function, serpins2008, Leuven, Belgium

  57. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  58. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  Google Scholar 

  59. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  60. Tranqui L, Prandini M-H, Chapel A (1979) The structure of plasminogen studied by electron Microscopy. Biol Cell 34:39–42

    CAS  Google Scholar 

  61. Weisel JW, Nagaswami C, Korsholm B, Petersen LC, Suenson E (1994) Interactions of plasminogen with polymerizing fibrin and its derivatives, monitored with a photoaffinity cross-linker and electron microscopy. J Mol Biol 235:1117–1135

    Article  CAS  PubMed  Google Scholar 

  62. Ho-Tin-Noé B, Rojas G, Vranckx R, Lijnen HR, Anglés-Cano E (2005) Functional hierarchy of plasminogen kringles 1 and 4 in fibrinolysis and plasmin-induced cell detachment and apoptosis. FEBS J 272:3387–3400

    Article  PubMed  Google Scholar 

  63. Huet E, Cauchard JH, Berton A, Robinet A, Decarme M, Hornebeck W, Bellon G (2004) Inhibition of plasmin-mediated prostromelysin-1 activation by interaction of long chain unsaturated fatty acids with kringle 5. Biochem Pharmacol 67:643–654

    Article  CAS  PubMed  Google Scholar 

  64. Cao Y, Chen A, An SS, Ji RW, Davidson D, Llinás M (1997) Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J Biol Chem 272:22924–22928

    Article  CAS  PubMed  Google Scholar 

  65. Gonzalez-Gronow M, Kalfa T, Johnson CE, Gawdi G, Pizzo SV (2003) The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J Biol Chem 278:27312–27318

    Article  CAS  PubMed  Google Scholar 

  66. Davidson DJ, Haskell C, Majest S, Kherzai A, Egan DA, Walter KA, Schneider A, Gubbins EF, Solomon L, Chen Z, Lesniewski R, Henkin J (2005) Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res 65:4663–4672

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank PD Dr. A. Walz (Theodor Kocher Institute, University of Bern, Switzerland) for the generation of the synthetic peptides A2PIC(Glu442-Lys452) with and without sulfated Tyr445, Prof. Dr. U. Baumann (University of Bern, Switzerland) for providing the pET22b(+) vector and Prof. L.-O. Hedén (University of Lund, Sweden) for supplying the pPLGKG plasmid. We also thank Mr. U. Kämpfer for expert technical assistance, Mr. Christian Trachsel for his support building the plasminogen model, and Mr. S. Halbherr and Mrs. A. Mori for performing fluorescence measurements during their bachelor theses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Schaller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerber, S.S., Lejon, S., Locher, M. et al. The human α2-plasmin inhibitor: functional characterization of the unique plasmin(ogen)-binding region. Cell. Mol. Life Sci. 67, 1505–1518 (2010). https://doi.org/10.1007/s00018-010-0264-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-010-0264-3

Keywords

Navigation