Skip to main content
Log in

Different functional outcomes of intercellular membrane transfers to monocytes and T cells

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Trogocytosis is the uptake of membranes from one cell by another. Trogocytosis has been demonstrated for monocytes, B cells, T cells, and NK cells. The acquisition of the tolerogenic molecule HLA-G by T cells and NK cells makes them behave as regulatory cells. We investigated here whether HLA-G, which is expressed by tumor cells in vivo, could be acquired by monocytes and if this transfer could have functional consequences. We demonstrate that resting, and even more so, activated monocytes efficiently acquire membrane-bound HLA-G from HLA-G tumor cells by trogocytosis. However, we demonstrate that HLA-G quickly disappears from the surface of the monocytes in contrast to the HLA-G acquired by T cells. Consequently, HLA-Gacq+ monocytes do not reliably inhibit the on-going proliferation of autologous activated T cells and do not inhibit their cytokine production. Thus, we show that the acquirer cell may control the functional outcome of trogocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davis DM (2007) Intercellular transfer of cell-surface proteins is common and can affect many stages of an immune response. Nat Rev Immunol 7:238–243

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed KA, Munegowda MA, Xie Y, Xiang J (2008) Intercellular trogocytosis plays an important role in modulation of immune responses. Cell Mol Immunol 5:261–269

    Article  CAS  PubMed  Google Scholar 

  3. Hudrisier D, Riond J, Garidou L, Duthoit C, Joly E (2005) T cell activation correlates with an increased proportion of antigen among the materials acquired from target cells. Eur J Immunol 35:2284–2294

    Article  CAS  PubMed  Google Scholar 

  4. Hudrisier D, Riond J, Mazarguil H, Gairin JE, Joly E (2001) Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner. J Immunol 166:3645–3649

    CAS  PubMed  Google Scholar 

  5. Tatari-Calderone Z, Semnani RT, Nutman TB, Schlom J, Sabzevari H (2002) Acquisition of CD80 by human t cells at early stages of activation: functional involvement of CD80 acquisition in T cell to T cell interaction. J Immunol 169:6162–6169

    CAS  PubMed  Google Scholar 

  6. Game DS, Rogers NJ, Lechler RI (2005) Acquisition of HLA-DR and costimulatory molecules by T cells from allogeneic antigen presenting cells. Am J Transplant 7:1614–1625

    Article  Google Scholar 

  7. Xiang J, Huang H, Liu Y (2005) A new dynamic model of CD8+ T effector cell responses via CD4+ t helper-antigen-presenting cells. J Immunol 174:7497–7505

    CAS  PubMed  Google Scholar 

  8. Domaica CI, Fuertes MB, Rossi LE, Girart MV, Avila DE, Rabinovich GA, Zwirner NW (2009) Tumour-experienced T cells promote NK cell activity through trogocytosis of NKG2D and NKp46 ligands. EMBO Rep 10:908–915

    Article  CAS  PubMed  Google Scholar 

  9. LeMaoult J, Caumartin J, Daouya M, Favier B, Le Rond S, Gonzalez A, Carosella E (2007) Immune regulation by pretenders: cell-to-cell transfers of HLA-G make effector T cells act as regulatory cells. Blood 109:2040–2048

    Article  CAS  PubMed  Google Scholar 

  10. Caumartin J, Favier B, Daouya M, Guillard C, Moreau P, Carosella E, LeMaoult J (2007) Trogocytosis-based generation of suppressive NK cells. EMBO J 26:1423–1433

    Article  CAS  PubMed  Google Scholar 

  11. Rafii A, Mirshahi P, Poupot M, Faussat AM, Simon A, Ducros E, Mery E, Couderc B, Lis R, Capdet J, Bergalet J, Querleu D, Dagonnet F, Fournie JJ, Marie JP, Pujade-Lauraine E, Favre G, Soria J, Mirshahi M (2008) Oncologic trogocytosis of an original stromal cells induces chemoresistance of ovarian tumours. PLoS One 3:e3894

    Article  PubMed  Google Scholar 

  12. Waschbisch A, Meuth SG, Herrmann AM, Wrobel B, Schwab N, Lochmuller H, Wiendl H (2009) Intercellular exchanges of membrane fragments (trogocytosis) between human muscle cells and immune cells: a potential mechanism for the modulation of muscular immune responses. J Neuroimmunol 209:131–138

    Article  CAS  PubMed  Google Scholar 

  13. Horner H, Frank C, Dechant C, Repp R, Glennie M, Herrmann M, Stockmeyer B (2007) Intimate cell conjugate formation and exchange of membrane lipids precede apoptosis induction in target cells during antibody-dependent, granulocyte-mediated cytotoxicity. J Immunol 179:337–345

    CAS  PubMed  Google Scholar 

  14. Harshyne LA, Watkins SC, Gambotto A, Barratt-Boyes SM (2001) Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J Immunol 166:3717–3723

    CAS  PubMed  Google Scholar 

  15. Herrera OB, Golshayan D, Tibbott R, Ochoa FS, James MJ, Marelli-Berg FM, Lechler RI (2004) A novel pathway of alloantigen presentation by dendritic cells. J Immunol 173:4828–4837

    CAS  PubMed  Google Scholar 

  16. Zhang Q-J, Li X-L, Wang D, Huang X-C, Mathis JM, Duan W-M, Knight D, Shi R, Glass J, Zhang D-Q, Eisenbach L, Jefferies WA (2008) Trogocytosis of MHC-I/peptide complexes derived from tumors and infected cells enhances dendritic cell cross-priming and promotes adaptive T cell responses. PLoS ONE 3:e3097

    Article  PubMed  Google Scholar 

  17. Beum PV, Mack DA, Pawluczkowycz AW, Lindorfer MA, Taylor RP (2008) Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes. J Immunol 181:8120–8132

    CAS  PubMed  Google Scholar 

  18. Carosella ED, Favier B, Rouas-Freiss N, Moreau P, LeMaoult J (2008) Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood 111:4862–4870

    Article  CAS  PubMed  Google Scholar 

  19. Mitsdoerffer M, Schreiner B, Kieseier BC, Neuhaus O, Dichgans J, Hartung HP, Weller M, Wiendl H (2005) Monocyte-derived HLA-G acts as a strong inhibitor of autologous CD4 T cell activation and is upregulated by interferon-beta in vitro and in vivo: rationale for the therapy of multiple sclerosis. J Neuroimmunol 159:155–164

    Article  CAS  PubMed  Google Scholar 

  20. Morel E, Bellon T (2008) HLA class I molecules regulate IFN-{gamma} production induced in NK cells by target cells, viral products, or immature dendritic cells through the inhibitory receptor ILT2/CD85j. J Immunol 181:2368–2381

    CAS  PubMed  Google Scholar 

  21. Ristich V, Liang S, Zhang W, Wu J, Horuzsko A (2005) Tolerization of dendritic cells by HLA-G. Eur J Immunol 35:1133–1142

    Article  CAS  PubMed  Google Scholar 

  22. LeMaoult J, Krawice-Radanne I, Dausset J, Carosella ED (2004) HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci USA 101:7064–7069

    Article  CAS  PubMed  Google Scholar 

  23. Colonna M, Navarro F, Bellon T, Llano M, Garcia P, Samaridis J, Angman L, Cella M, Lopez-Botet M (1997) A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells. J Exp Med 186:1809–1818

    Article  CAS  PubMed  Google Scholar 

  24. Colonna M, Samaridis J, Cella M, Angman L, Allen RL, O’Callaghan CA, Dunbar R, Ogg GS, Cerundolo V, Rolink A (1998) Human myelomonocytic cells express an inhibitory receptor for classical and nonclassical MHC class I molecules. J Immunol 160:3096–3100

    CAS  PubMed  Google Scholar 

  25. Rajagopalan S, Long EO (1999) A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer Cells. J Exp Med 189:1093–1100

    Article  CAS  PubMed  Google Scholar 

  26. Favier B, Lemaoult J, Lesport E, Carosella ED (2009) ILT2/HLA-G interaction impairs NK-cell functions through the inhibition of the late but not the early events of the NK-cell activating synapse. FASEB J. doi:10.1096/fj.09-135194

  27. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes H-H (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  28. Onfelt B, Nedvetzki S, Yanagi K, Davis DM (2004) Cutting edge: membrane nanotubes connect immune cells. J Immunol 173:1511–1513

    PubMed  Google Scholar 

  29. Williams GS, Collinson LM, Brzostek J, Eissmann P, Almeida CR, McCann FE, Burshtyn D, Davis DM (2007) Membranous structures transfer cell surface proteins across NK cell immune synapses. Traffic 8:1190–1204

    Article  CAS  PubMed  Google Scholar 

  30. Dietmar Z, Cyril JC, Yoram R, Peter W (2004) Extended presentation of specific MHC-peptide complexes by mature dendritic cells compared to other types of antigen-presenting cells. Eur J Immunol 34:1551–1560

    Article  Google Scholar 

  31. Huang J-F, Yang Y, Sepulveda H, Shi W, Hwang I, Peterson PA, Jackson MR, Sprent J, Cai Z (1999) TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 286:952–954

    Article  CAS  PubMed  Google Scholar 

  32. Carlin LM, Eleme K, McCann FE, Davis DM (2001) Intercellular transfer and supramolecular organization of human leukocyte antigen C at inhibitory natural killer cell immune synapses. J Exp Med 194:1507–1517

    Article  CAS  PubMed  Google Scholar 

  33. Jiang S, Herrera O, Lechler RI (2004) New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance. Curr Opin Immunol 16:550–557

    Article  CAS  PubMed  Google Scholar 

  34. Riteau B, Menier C, Khalil-Daher I, Sedlik C, Dausset J, Rouas-Freiss N, Carosella ED (1999) HLA-G inhibits the allogeneic proliferative response. J Reprod Immunol 43:203–211

    Article  CAS  PubMed  Google Scholar 

  35. Bahri R, Hirsch F, Josse A, Rouas-Freiss N, Bidere N, Vasquez A, Carosella ED, Charpentier B, Durrbach A (2006) Soluble HLA-G inhibits cell cycle progression in human alloreactive T lymphocytes. J Immunol 176:1331–1339

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Commisariat a l’Energie Atomique (CEA) and Fondo de Investigacion Sanitaria PI070298.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel LeMaoult.

Additional information

K.-Y. HoWangYin and E. Alegre contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1: Intracellular expression of HLA-G

Intra-cytoplasmic expression of HLA-G by monocytes was assessed by intracellular staining using the antibody anti-HLA-G 4H84. Data are representative of 3 independent experiments. (TIFF 2194 kb)

Supplemental Figure 2: Trogocytosis is not inhibited by blocking HLA-G or ILT2

Acquisition of HLA-G by monocytes incubated 30 min with M8-HLA-G1 in the presence of a blocking anti-HLA-G1 (87G), or blocking anti-ILT2 (GHI/75), or isotypic control antibodies. Data are representative of three independent experiments. (TIFF 1904 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

HoWangYin, KY., Alegre, E., Daouya, M. et al. Different functional outcomes of intercellular membrane transfers to monocytes and T cells. Cell. Mol. Life Sci. 67, 1133–1145 (2010). https://doi.org/10.1007/s00018-009-0239-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0239-4

Keywords

Navigation