Skip to main content

Advertisement

Log in

Cell penetrating peptides: overview and applications to the delivery of oligonucleotides

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Crossing biological barriers represents a major limitation for clinical applications of biomolecules such as nucleic acids, peptides or proteins. Cell penetrating peptides (CPP), also named protein transduction domains, comprise short and usually basic amino acids-rich peptides originating from proteins able to cross biological barriers, such as the viral Tat protein, or are rationally designed. They have emerged as a new class of non-viral vectors allowing the delivery of various biomolecules across biological barriers from low molecular weight drugs to nanosized particles. Encouraging data with CPP-conjugated oligonucleotides have been obtained both in vitro and in vivo in animal models of diseases such as Duchenne muscular dystrophy. Whether CPP-cargo conjugates enter cells by direct translocation across the plasma membrane or by endocytosis remains controversial. In many instances, however, endosomal escape appears as a major limitation of this new delivery strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frankel AD, Pabo CO (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55:1189–1193

    Article  PubMed  CAS  Google Scholar 

  2. Joliot AH, Triller A, Volovitch M, Pernelle C, Prochiantz A (1991) alpha-2, 8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide. New Biol 3:1121–1134

    PubMed  CAS  Google Scholar 

  3. Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  4. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272:16010–16017

    Article  PubMed  CAS  Google Scholar 

  5. Joliot A, Prochiantz A (2008) Homeoproteins as natural Penetratin cargoes with signaling properties. Adv Drug Deliv Rev 60:608–613

    Article  PubMed  CAS  Google Scholar 

  6. Morris MC, Vidal P, Chaloin L, Heitz F, Divita G (1997) A new peptide vector for efficient delivery of oligonucleotides into mammalian cells. Nucleic Acids Res 25:2730–2736

    Article  PubMed  CAS  Google Scholar 

  7. Pooga M, Hallbrink M, Zorko M, Langel U (1998) Cell penetration by transportan. FASEB J 12:67–77

    PubMed  CAS  Google Scholar 

  8. Morris MC, Deshayes S, Heitz F, Divita G (2008) Cell-penetrating peptides: from molecular mechanisms to therapeutics. Biol Cell 100:201–217

    Article  PubMed  CAS  Google Scholar 

  9. Wender PA, Galliher WC, Goun EA, Jones LR, Pillow TH (2008) The design of guanidinium-rich transporters and their internalization mechanisms. Adv Drug Deliv Rev 60:452–472

    Article  PubMed  CAS  Google Scholar 

  10. Asoh S, Ohta S (2008) PTD-mediated delivery of anti-cell death proteins/peptides and therapeutic enzymes. Adv Drug Deliv Rev 60:499–516

    Article  PubMed  CAS  Google Scholar 

  11. Cantara S, Thorpe PE, Ziche M, Donnini S (2007) TAT-BH4 counteracts Abeta toxicity on capillary endothelium. FEBS Lett 581:702–706

    Article  PubMed  CAS  Google Scholar 

  12. Ono M, Sawa Y, Ryugo M, Alechine AN, Shimizu S, Sugioka R, Tsujimoto Y, Matsuda H (2005) BH4 peptide derivative from Bcl-xL attenuates ischemia/reperfusion injury thorough anti-apoptotic mechanism in rat hearts. Eur J Cardiothorac Surg 27:117–121

    Article  PubMed  Google Scholar 

  13. Bright R, Raval AP, Dembner JM, Perez-Pinzon MA, Steinberg GK, Yenari MA, Mochly-Rosen D (2004) Protein kinase C delta mediates cerebral reperfusion injury in vivo. J Neurosci 24:6880–6888

    Article  PubMed  CAS  Google Scholar 

  14. Ikeno F, Inagaki K, Rezaee M, Mochly-Rosen D (2007) Impaired perfusion after myocardial infarction is due to reperfusion-induced deltaPKC-mediated myocardial damage. Cardiovasc Res 73:699–709

    Article  PubMed  CAS  Google Scholar 

  15. Chen L, Harrison SD (2007) Cell-penetrating peptides in drug development: enabling intracellular targets. Biochem Soc Trans 35:821–825

    Article  PubMed  CAS  Google Scholar 

  16. Fawell S, Seery J, Daikh Y, Moore C, Chen LL, Pepinsky B, Barsoum J (1994) Tat-mediated delivery of heterologous proteins into cells. Proc Natl Acad Sci USA 91:664–668

    Article  PubMed  CAS  Google Scholar 

  17. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF (1999) In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572

    Article  PubMed  CAS  Google Scholar 

  18. Murriel CL, Dowdy SF (2006) Influence of protein transduction domains on intracellular delivery of macromolecules. Expert Opin Drug Deliv 3:739–746

    Article  PubMed  CAS  Google Scholar 

  19. Edenhofer F (2008) Protein transduction revisited: novel insights into the mechanism underlying intracellular delivery of proteins. Curr Pharm Des 14:3628–3636

    Article  PubMed  CAS  Google Scholar 

  20. Kamei N, Morishita M, Eda Y, Ida N, Nishio R, Takayama K (2008) Usefulness of cell-penetrating peptides to improve intestinal insulin absorption. J Control Release 132:21–25

    Article  PubMed  CAS  Google Scholar 

  21. Brunet I, Di Nardo AA, Sonnier L, Beurdeley M, Prochiantz A (2007) The topological role of homeoproteins in the developing central nervous system. Trends Neurosci 30:260–267

    Article  PubMed  CAS  Google Scholar 

  22. Goun EA, Pillow TH, Jones LR, Rothbard JB, Wender PA (2006) Molecular transporters: synthesis of oligoguanidinium transporters and their application to drug delivery and real-time imaging. Chembiochem 7:1497–1515

    Article  PubMed  CAS  Google Scholar 

  23. Dubikovskaya EA, Thorne SH, Pillow TH, Contag CH, Wender PA (2008) Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters. Proc Natl Acad Sci USA 105:12128–12133

    Article  PubMed  Google Scholar 

  24. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251

    Article  PubMed  CAS  Google Scholar 

  25. Josephson L, Tung CH, Moore A, Weissleder R (1999) High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem 10:186–191

    Article  PubMed  CAS  Google Scholar 

  26. Torchilin VP (2008) Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90:604–610

    Article  PubMed  CAS  Google Scholar 

  27. Pooga M, Soomets U, Hallbrink M, Valkna A, Saar K, Rezaei K, Kahl U, Hao JX, Xu XJ, Wiesenfeld-Hallin Z, Hokfelt T, Bartfai T, Langel U (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 16:857–861

    Article  PubMed  CAS  Google Scholar 

  28. Juliano R, Bauman J, Kang H, Ming X (2009) Biological barriers to therapy with antisense and siRNA oligonucleotides. Mol Pharm 6:686–695

    Article  PubMed  CAS  Google Scholar 

  29. Kang SH, Cho MJ, Kole R (1998) Up-regulation of luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. Biochemistry 37:6235–6239

    Article  PubMed  CAS  Google Scholar 

  30. Sazani P, Kang SH, Maier MA, Wei C, Dillman J, Summerton J, Manoharan M, Kole R (2001) Nuclear antisense effects of neutral, anionic and cationic oligonucleotide analogs. Nucleic Acids Res 29:3965–3974

    PubMed  CAS  Google Scholar 

  31. Abes S, Williams D, Prevot P, Thierry A, Gait MJ, Lebleu B (2006) Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates. J Control Release 110:595–604

    Article  PubMed  CAS  Google Scholar 

  32. Shiraishi T, Pankratova S, Nielsen PE (2005) Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides. Chem Biol 12:923–929

    Article  PubMed  CAS  Google Scholar 

  33. Boe S, Hovig E (2006) Photochemically induced gene silencing using PNA-peptide conjugates. Oligonucleotides 16:145–157

    Article  PubMed  CAS  Google Scholar 

  34. Shiraishi T, Nielsen PE (2006) Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates. FEBS Lett 580:1451–1456

    Article  PubMed  CAS  Google Scholar 

  35. Rothbard JB, Kreider E, VanDeusen CL, Wright L, Wylie BL, Wender PA (2002) Arginine-rich molecular transporters for drug delivery: role of backbone spacing in cellular uptake. J Med Chem 45:3612–3618

    Article  PubMed  CAS  Google Scholar 

  36. Abes S, Moulton HM, Clair P, Prevot P, Youngblood DS, Wu RP, Iversen PL, Lebleu B (2006) Vectorization of morpholino oligomers by the (R-Ahx-R)4 peptide allows efficient splicing correction in the absence of endosomolytic agents. J Control Release 116:304–313

    Article  PubMed  CAS  Google Scholar 

  37. Abes S, Turner JJ, Ivanova GD, Owen D, Williams D, Arzumanov A, Clair P, Gait MJ, Lebleu B (2007) Efficient splicing correction by PNA conjugation to an R6-Penetratin delivery peptide. Nucleic Acids Res 35:4495–4502

    Article  PubMed  CAS  Google Scholar 

  38. Abes R, Moulton HM, Clair P, Yang ST, Abes S, Melikov K, Prevot P, Youngblood DS, Iversen PL, Chernomordik LV, Lebleu B (2008) Delivery of steric block morpholino oligomers by (R-X-R)4 peptides: structure-activity studies. Nucleic Acids Res 36:6343–6354

    Article  PubMed  CAS  Google Scholar 

  39. Burrer R, Neuman BW, Ting JP, Stein DA, Moulton HM, Iversen PL, Kuhn P, Buchmeier MJ (2007) Antiviral effects of antisense morpholino oligomers in murine coronavirus infection models. J Virol 81:5637–5648

    Article  PubMed  CAS  Google Scholar 

  40. Turner JJ, Ivanova GD, Verbeure B, Williams D, Arzumanov AA, Abes S, Lebleu B, Gait MJ (2005) Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Res 33:6837–6849

    Article  PubMed  CAS  Google Scholar 

  41. Ivanova GD, Arzumanov A, Abes R, Yin H, Wood MJ, Lebleu B, Gait MJ (2008) Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res 36:6418–6428

    Article  PubMed  CAS  Google Scholar 

  42. Lebleu B, Moulton HM, Abes R, Ivanova GD, Abes S, Stein DA, Iversen PL, Arzumanov AA, Gait MJ (2008) Cell penetrating peptide conjugates of steric block oligonucleotides. Adv Drug Deliv Rev 60:517–529

    Article  PubMed  CAS  Google Scholar 

  43. Mae M, El Andaloussi S, Lundin P, Oskolkov N, Johansson HJ, Guterstam P, Langel U (2009) A stearylated CPP for delivery of splice correcting oligonucleotides using a non-covalent co-incubation strategy. J Control Release 134:221–227

    Article  PubMed  CAS  Google Scholar 

  44. Eguchi A, Meade BR, Chang YC, Fredrickson CT, Willert K, Puri N, Dowdy SF (2009) Efficient siRNA delivery into primary cells by a peptide transduction domain-dsRNA binding domain fusion protein. Nat Biotechnol 27:567–571

    Article  PubMed  CAS  Google Scholar 

  45. Crombez L, Morris MC, Dufort S, Aldrian-Herrada G, Nguyen Q, McMaster G, Coll J-L, Heitz F, Divita G (2009) Targeting cycling B through peptide-based delivery of siRNA prevents tumor growth. Nucleic Acids Res (in press)

  46. Aartsma-Rus A, van Ommen GB (2007) Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13:1609–1624

    Article  PubMed  CAS  Google Scholar 

  47. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyanopoulos P, Garraldi EM, Rutherford M, Mcculley C, Popplewell LJ, Graham IR, Dickson G, Wood M, Wells DJ, Wilton SD, Holt T, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8:918–928

    Article  PubMed  CAS  Google Scholar 

  48. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GB (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. New England J Med 357:2677–2686

    Article  Google Scholar 

  49. Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G (1998) Modification of splicing in the dystrophin gene in cultured mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 7:1083–1090

    Article  PubMed  CAS  Google Scholar 

  50. Mann CJ, Honeyman K, Cheng AJ, Ly T, Lloyd F, Fletcher S, Morgan JE, Partridge TA, Wilton SD (2001) Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proc Natl Acad Sci USA 98:42–47

    Article  PubMed  CAS  Google Scholar 

  51. Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin HF, Alter J, Jadoon A, Bou-Gharios G, Partridge T (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 102:198–203

    Article  PubMed  CAS  Google Scholar 

  52. Fletcher S, Honeyman K, Fall AM, Harding PL, Johnsen RD, Wilton SD (2006) Dystrophin expression in the mdx mouse after localised and systemic administration of a morpholino antisense oligonucleotide. J Gene Med 8:207–216

    Article  PubMed  CAS  Google Scholar 

  53. Alter J, Lou F, Rabinowitz A, Yin H, Rosenfeld J, Wilton SD, Partridge TA, Lu QL (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177

    Article  PubMed  CAS  Google Scholar 

  54. Fletcher S, Honeyman K, Fall AM, Harding PL, Johnsen RD, Steinhaus JP, Moulton HM, Iversen PL, Wilton SD (2007) Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse. Mol Ther 151:587–592

    Google Scholar 

  55. Yin H, Moulton HM, Seow Y, Boyd C, Boutilier J, Iversen P, Wood MJA (2008) Cell-penetrating peptide-conjugated antisense oligonucleotides restore systemic muscle and cardiac dystrophin expression and function. Hum Mol Genet 17:3909–3918

    Article  PubMed  CAS  Google Scholar 

  56. Jearawiriyapaisarn N, Moulton HM, Buckley B, Roberts J, Sazani P, Fucharoen S, Iversen PL, Kole R (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 16:1624–1629

    Article  PubMed  CAS  Google Scholar 

  57. Wu B, Moulton HM, Iversen PL, Juang J, Li J, Spurney CF, Sali A, Guerron AD, Nagaraju K, Doran T, Lu P, Xiao X, Lu QL (2008) Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modifies morpholino oligomer. Proc Natl Acad Sci USA 105:14814–14819

    Article  PubMed  Google Scholar 

  58. Yin H, Moulton HM, Betts C, Seow Y, Boutilier J, Iversen PL, Wood MJA (2009) A fusion peptide directs enhanced systemic dystrophin exon skipping and functional restoration in dystrophin-deficient mdx mice. Hum Mol Genet (in press)

  59. Ivanova GD, Arzumanov A, Abes R, Yin H, Wood MJA, Lebleu B, Gait MJ (2008) Improved cell-penetrating peptide-PNA conjugates for splicing redirection in HeLa cells and exon skipping in mdx mouse muscle. Nucleic Acids Res 36:6418–6428

    Article  PubMed  CAS  Google Scholar 

  60. Drin G, Mazel M, Clair P, Mathieu D, Kaczorek M, Temsamani J (2001) Physico-chemical requirements for cellular uptake of pAntp peptide. Role of lipid-binding affinity. Eur J Biochem 268:1304–1314

    Article  PubMed  CAS  Google Scholar 

  61. Richard JP, Melikov K, Vives E, Ramos C, Verbeure B, Gait MJ, Chernomordik LV, Lebleu B (2003) Cell-penetrating peptides. A reevaluation of the mechanism of cellular uptake. J Biol Chem 278:585–590

    Article  PubMed  CAS  Google Scholar 

  62. Lundberg M, Johansson M (2002) Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 291:367–371

    Article  PubMed  CAS  Google Scholar 

  63. Richard JP, Melikov K, Brooks H, Prevot P, Lebleu B, Chernomordik LV (2005) Cellular uptake of unconjugated TAT peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J Biol Chem 280:15300–15306

    Article  PubMed  CAS  Google Scholar 

  64. Drin G, Demene H, Temsamani J, Brasseur R (2001) Translocation of the pAntp peptide and its amphipathic analogue AP-2AL. Biochemistry 40:1824–1834

    Article  PubMed  CAS  Google Scholar 

  65. Torchilin VP, Rammohan R, Weissig V, Levchenko TS (2001) TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci USA 98:8786–8791

    Article  PubMed  CAS  Google Scholar 

  66. Fretz MM, Koning GA, Mastrobattista E, Jiskoot W, Storm G (2004) OVCAR-3 cells internalize TAT-peptide modified liposomes by endocytosis. Biochim Biophys Acta 1665:48–56

    Article  PubMed  CAS  Google Scholar 

  67. Ter-Avetisyan G, Tunnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, Cardoso MC (2009) Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem 284:3370–3378

    Article  PubMed  CAS  Google Scholar 

  68. Duchardt F, Fotin-Mleczek M, Schwarz H, Fischer R, Brock R (2007) A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8:848–866

    Article  PubMed  CAS  Google Scholar 

  69. Vives E, Granier C, Prevot P, Lebleu B (1997) Structure activity relationship study of the plasma membrane translocating potential of a short peptide of HIV-1 Tat protein. Lett Pept Sci 4:1–8

    Article  Google Scholar 

  70. Console S, Marty C, Garcia-Echeverria C, Schwendener R, Ballmer-Hofer K (2003) Antennapedia and HIV transactivator of transcription (TAT) “protein transduction domains” promote endocytosis of high molecular weight cargo upon binding to cell surface glycosaminoglycans. J Biol Chem 278:35109–35114

    Article  PubMed  CAS  Google Scholar 

  71. Potocky TB, Menon AK, Gellman SH (2003) Cytoplasmic and nuclear delivery of a TAT-derived peptide and a beta-peptide after endocytic uptake into HeLa cells. J Biol Chem 278:50188–50194

    Article  PubMed  CAS  Google Scholar 

  72. Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15:2347–2360

    Article  PubMed  CAS  Google Scholar 

  73. Fittipaldi A, Ferrari A, Zoppe M, Arcangeli C, Pellegrini V, Beltram F, Giacca M (2003) Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 278:34141–34149

    Article  PubMed  CAS  Google Scholar 

  74. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10:310–315

    Article  PubMed  CAS  Google Scholar 

  75. Kaplan IM, Wadia JS, Dowdy SF (2005) Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102:247–253

    Article  PubMed  CAS  Google Scholar 

  76. Foerg C, Merkle HP (2008) On the biomedical promise of cell penetrating peptides: limits versus prospects. J Pharm Sci 97:144–162

    Article  PubMed  CAS  Google Scholar 

  77. Jiang T, Olson ES, Nguyen QT, Roy M, Jennings PA, Tsien RY (2004) Tumor imaging by means of proteolytic activation of cell-penetrating peptides. Proc Natl Acad Sci USA 101:17867–17872

    Article  PubMed  CAS  Google Scholar 

  78. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y (2001) Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 276:5836–5840

    Article  PubMed  CAS  Google Scholar 

  79. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB (2000) Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res 56:318–325

    Article  PubMed  CAS  Google Scholar 

  80. Oehlke J, Scheller A, Wiesner B, Krause E, Beyermann M, Klauschenz E, Melzig M, Bienert M (1998) Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim Biophys Acta 1414:127–139

    Article  PubMed  CAS  Google Scholar 

  81. Wadia JS, Dowdy SF (2005) Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev 57:579–596

    Article  PubMed  CAS  Google Scholar 

  82. Eguchi A, Akuta T, Okuyama H, Senda T, Yokoi H, Inokuchi H, Fujita S, Hayakawa T, Takeda K, Hasegawa M, Nakanishi M (2001) Protein transduction domain of HIV-1 Tat protein promotes efficient delivery of DNA into mammalian cells. J Biol Chem 276:26204–26210

    Article  PubMed  CAS  Google Scholar 

  83. Snyder EL, Dowdy SF (2001) Protein/peptide transduction domains: potential to deliver large DNA molecules into cells. Curr Opin Mol Ther 3:147–152

    PubMed  CAS  Google Scholar 

  84. Kersemans V, Kersemans K, Cornelissen B (2008) Cell penetrating peptides for in vivo molecular imaging applications. Curr Pharm Des 14:2415–2447

    Article  PubMed  CAS  Google Scholar 

  85. Bhorade R, Weissleder R, Nakakoshi T, Moore A, Tung CH (2000) Macrocyclic chelators with paramagnetic cations are internalized into mammalian cells via a HIV-tat derived membrane translocation peptide. Bioconjug Chem 11:301–305

    Article  PubMed  CAS  Google Scholar 

  86. Polyakov V, Sharma V, Dahlheimer JL, Pica CM, Luker GD, Piwnica-Worms D (2000) Novel Tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy. Bioconjug Chem 11:762–771

    Article  PubMed  CAS  Google Scholar 

  87. Torchilin VP (2008) Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv Drug Deliv Rev 60:548–558

    Article  PubMed  CAS  Google Scholar 

  88. Rudolph C, Schillinger U, Ortiz A, Tabatt K, Plank C, Muller RH, Rosenecker J (2004) Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo. Pharm Res 21:1662–1669

    Article  PubMed  CAS  Google Scholar 

  89. de la Fuente JM, Berry CC (2005) Tat peptide as an efficient molecule to translocate gold nanoparticles into the cell nucleus. Bioconjug Chem 16:1176–1180

    Article  CAS  Google Scholar 

  90. Sethuraman VA, Bae YH (2007) TAT peptide-based micelle system for potential active targeting of anti-cancer agents to acidic solid tumors. J Control Release 118:216–224

    Article  PubMed  CAS  Google Scholar 

  91. Tseng YL, Liu JJ, Hong RL (2002) Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol 62:864–872

    Article  PubMed  CAS  Google Scholar 

  92. Torchilin VP, Levchenko TS (2003) TAT-liposomes: a novel intracellular drug carrier. Curr Protein Pept Sci 4:133–140

    Article  PubMed  CAS  Google Scholar 

  93. Kirschberg TA, VanDeusen CL, Rothbard JB, Yang M, Wender PA (2003) Arginine-based molecular transporters: the synthesis and chemical evaluation of releasable taxol-transporter conjugates. Org Lett 5:3459–3462

    Article  PubMed  CAS  Google Scholar 

  94. Rothbard JB, Garlington S, Lin Q, Kirschberg T, Kreider E, McGrane PL, Wender PA, Khavari PA (2000) Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation. Nat Med 6:1253–1257

    Article  PubMed  CAS  Google Scholar 

  95. Abes R, Arzumanov A, Moulton H, Abes S, Ivanova G, Gait MJ, Iversen P, Lebleu B (2008) Arginine-rich cell penetrating peptides: design, structure-activity, and applications to alter pre-mRNA splicing by steric-block oligonucleotides. J Pept Sci 14:455–460

    Article  PubMed  CAS  Google Scholar 

  96. Veldhoen S, Laufer SD, Restle T (2008) Recent developments in peptide-based nucleic acid delivery. Int J Mol Sci 9:1276–1320

    Article  PubMed  CAS  Google Scholar 

  97. Hallbrink M, Floren A, Elmquist A, Pooga M, Bartfai T, Langel U (2001) Cargo delivery kinetics of cell-penetrating peptides. Biochim Biophys Acta 1515:101–109

    Article  PubMed  CAS  Google Scholar 

  98. Corradin S, Ransijn A, Corradin G, Bouvier J, Delgado MB, Fernandez-Carneado J, Mottram JC, Vergeres G, Mauel J (2002) Novel peptide inhibitors of Leishmania gp63 based on the cleavage site of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein. Biochem J 367:761–769

    Article  PubMed  CAS  Google Scholar 

  99. Datta K, Sundberg C, Karumanchi SA, Mukhopadhyay D (2001) The 104–123 amino acid sequence of the beta-domain of von Hippel-Lindau gene product is sufficient to inhibit renal tumor growth and invasion. Cancer Res 61:1768–1775

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors' laboratories has been financed by grants from AFM (Association Française contre les Myopathies), ANR (Agence Nationale de la Recherche) and LNFCC (Ligue Nationale de Lutte contre le Cancer). A.F. Saleh is supported by a Development Gap Fund grant from MRC-Technology and we acknowledge additional funding from Action Duchenne. We thank A.A. Arzumanov, D. Williams and D. Owen for their work in synthesis and activity of PNA-peptide and PMO-peptide conjugates. We also thank H. Yin and M. Wood (University of Oxford) for providing information and figures regarding in vivo mdx mouse studies in DMD.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Said Hassane or Bernard Lebleu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Said Hassane, F., Saleh, A.F., Abes, R. et al. Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell. Mol. Life Sci. 67, 715–726 (2010). https://doi.org/10.1007/s00018-009-0186-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0186-0

Keywords

Navigation