Skip to main content
Log in

The bacterial LexA transcriptional repressor

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract.

Bacteria respond to DNA damage by mounting a coordinated cellular response, governed by the RecA and LexA proteins. In Escherichia coli, RecA stimulates cleavage of the LexA repressor, inducing more than 40 genes that comprise the SOS global regulatory network. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation. In some well-characterised pathogens, induction of the SOS response modulates the evolution and dissemination of drug resistance, as well as synthesis, secretion and dissemination of the virulence. In this review, we discuss the structure of LexA protein, particularly with respect to distinct conformations that enable repression of SOS genes via specific DNA binding or repressor cleavage during the response to DNA damage. These may provide new starting points in the battle against the emergence of bacterial pathogens and the spread of drug resistance among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Butala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butala, M., Žgur-Bertok, D. & Busby, S.J.W. The bacterial LexA transcriptional repressor. Cell. Mol. Life Sci. 66, 82 (2009). https://doi.org/10.1007/s00018-008-8378-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00018-008-8378-6

Keywords.

Navigation