Skip to main content
Log in

Differential Harnack inequalities for heat equations with potentials under geometric flows

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

Abstract

In the paper we consider a closed Riemannian manifold M with a time-dependent Riemannian metric g ij (t) evolving by ∂ t g ij  = −2S ij , where S ij is a symmetric two-tensor on (M,g(t)). We prove some differential Harnack inequalities for positive solutions of heat equations with potentials on (M,g(t)). Some applications of these inequalities will be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews B.: Harnack inequalities for evolving hypersurfaces, Math. Z. 217, 179–197 (1994)

    MATH  Google Scholar 

  2. Cao H. D.: On Harnack’s inequalities for the Kähler-Ricci flow, Invent. Math. 109, 247–263 (1992)

    Google Scholar 

  3. D. Cao X.: Differential Harnack estimates for backward heat equations with potentials under the Ricci flow, J. Funct. Anal. 255, 1024–1038 (2008)

    Article  MathSciNet  Google Scholar 

  4. Cao X. D., Hamilton R.: Differential Harnack estimates for time-dependent heat equations with potentials, Geom. Funct. Anal. 19, 989–1000 (2009)

    Article  Google Scholar 

  5. Chow B.: On Harnack’s inequality and entropy for the Gaussian curvature flow, Comm. Pure Appl. Math. 44, 469–483 (1991)

    Article  MATH  Google Scholar 

  6. Chow B.: The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature, Comm. Pure Appl. Math. 45, 1003–1014 (1992)

    Article  MATH  Google Scholar 

  7. Fang S. W.: Local Harnack estimate for Yamabe flow on locally conformally flat manifolds, Asian J. Math. 12(, 545–552), 12 , 545–552 (2008)

    Google Scholar 

  8. Fang S. W.: Harnack estimates for curvature flows depending on mean curvature Appl. Math. J. Chinese Univ. B 24, 361–369 (2009)

    Article  Google Scholar 

  9. Fang S. W., Ye F.: Differential Harnack inequalities for heat equations with potentials under Kähler-Ricci flow, Acta Math. Sincia (Chinese Series) 53, 597–606 (2010)

    Google Scholar 

  10. Fang S. W.: Differential Harnack inequalities for heat equations with potentials under the Bernhard List’s flow, Geom. Dedicata 161, 11–22 (2012)

    Article  Google Scholar 

  11. S. W. Fang, Differential Harnack estimates for backward heat equations with potentials under an extended Ricci flow, preprint.

  12. . S. W. Fang, Differential Harnack estimates for backward heat equations with potentials under geometric flows, preprint.

  13. R. Hamilton, The Ricci flow on surfaces, Contemp. Math. 71, Amer. Math. Soc., Providence, RI, (1988), 237–262.

  14. Hamilton R.: A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1, 113–126 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Hamilton R.: The Harnack estimate for the Ricci flow, J. Diff. Geom. 37, 225–243 (1993)

    MathSciNet  MATH  Google Scholar 

  16. Hamilton R.: Harnack estimate for the mean curvature flow, J. Diff. Geom. 41, 215–226 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Kuang S.L., Zhang Q.S.: A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow, J. Funct. Anal. 255, 1008–1023 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li P., Yau S. T.: On the parabolic kernel of the Schrödinger operator, Acta. Math. 156, 153–201 (1986)

    Google Scholar 

  19. Müller R.: Monotone volume formulas for geometric flows, J. reine angew. Math. 643, 39–57 (2010)

    MATH  Google Scholar 

  20. G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math. DG/0211159 v1 November 11, 2002

  21. Smoczyk K.: Harnack inequalities for curvature flows depending on mean curvature, New York J. Math 3, 103–118 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Smoczyk K.: Harnack inequality for the Lagrangian mean curvature flow, Calc. Var. Partial Differ. Equ. 8, 247–258 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Fang.

Additional information

The work is supported by the Foundation of Yangzhou University 2011CXJ004 and NSFC 11101352.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, S. Differential Harnack inequalities for heat equations with potentials under geometric flows. Arch. Math. 100, 179–189 (2013). https://doi.org/10.1007/s00013-013-0482-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00013-013-0482-7

Mathematics Subject Classification (2010)

Keywords

Navigation