Skip to main content
Log in

Anemoside B4, a new pyruvate carboxylase inhibitor, alleviates colitis by reprogramming macrophage function

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objectives

Colitis is a global disease usually accompanied by intestinal epithelial damage and intestinal inflammation, and an increasing number of studies have found natural products to be highly effective in treating colitis. Anemoside B4 (AB4), an abundant saponin isolated from Pulsatilla chinensis (Bunge), which was found to have strong anti-inflammatory activity. However, the exact molecular mechanisms and direct targets of AB4 in the treatment of colitis remain to be discovered.

Methods

The anti-inflammatory activities of AB4 were verified in LPS-induced cell models and 2, 4, 6-trinitrobenzene sulfonic (TNBS) or dextran sulfate sodium (DSS)-induced colitis mice and rat models. The molecular target of AB4 was identified by affinity chromatography analysis using chemical probes derived from AB4. Experiments including proteomics, molecular docking, biotin pull-down, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to confirm the binding of AB4 to its molecular target. Overexpression of pyruvate carboxylase (PC) and PC agonist were used to study the effects of PC on the anti-inflammatory and metabolic regulation of AB4 in vitro and in vivo.

Results

AB4 not only significantly inhibited LPS-induced NF-κB activation and increased ROS levels in THP-1 cells, but also suppressed TNBS/DSS-induced colonic inflammation in mice and rats. The molecular target of AB4 was identified as PC, a key enzyme related to fatty acid, amino acid and tricarboxylic acid (TCA) cycle. We next demonstrated that AB4 specifically bound to the His879 site of PC and altered the protein's spatial conformation, thereby affecting the enzymatic activity of PC. LPS activated NF-κB pathway and increased PC activity, which caused metabolic reprogramming, while AB4 reversed this phenomenon by inhibiting the PC activity. In vivo studies showed that diisopropylamine dichloroacetate (DADA), a PC agonist, eliminated the therapeutic effects of AB4 by changing the metabolic rearrangement of intestinal tissues in colitis mice.

Conclusion

We identified PC as a direct cellular target of AB4 in the modulation of inflammation, especially colitis. Moreover, PC/pyruvate metabolism/NF-κB is crucial for LPS-driven inflammation and oxidative stress. These findings shed more light on the possibilities of PC as a potential new target for treating colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors will supply the relevant data in response to reasonable requests.

Abbreviations

AB4:

Anemoside B4

BC:

Biotin carboxylase domain

BCCP:

Biotin carboxyl carrier protein domain

BSA:

Bovine serum albumin

CD:

Crohn's disease

CETSA:

Cellular thermal shift assay

CT:

Carboxyl transferase domain

DADA:

Diisopropylamine dichloroacetate

DAI:

Disease activity index

DARTS:

Drug affinity-responsive target stability

DSS:

Dextran sulfate sodium

IBD:

Inflammatory bowel disease

LPS:

Lipopolysaccharide

PA:

Palmitic acid

PC:

Pyruvate carboxylase

PDH:

Pyruvate dehydrogenase

OAA:

Oxaloacetate

UC:

Ulcerative colitis

SDS-PAGE:

Sodium dodecyl sulfate PAGE

SPR:

Surface plasmon resonance

TCA:

Tricarboxylic acid

TNBS:

2, 4, 6-Trinitrobenzene sulfonic acid

References

  1. Olivera P, Danese S, Jay N, Natoli G, Peyrin-Biroulet L. Big data in IBD: a look into the future. Nat Rev Gastroenterol Hepatol. 2019;16:312–21.

    Article  PubMed  Google Scholar 

  2. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Torres J, Mehandru S, Colombel J-F, Peyrin-Biroulet L. Crohn’s disease. Lancet. 2017;389:1741–55.

    Article  PubMed  Google Scholar 

  4. Porter RJ, Arends MJ, Churchhouse AMD, Din S. Inflammatory bowel disease-associated colorectal cancer: translational risks from mechanisms to medicines. J Crohns Colitis. 2021;15:2131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ordás I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet. 2012;380:1606–19.

    Article  PubMed  Google Scholar 

  6. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142:46-54.e42 (quiz e30).

    Article  PubMed  Google Scholar 

  7. Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2017;390:2769–78.

    Article  PubMed  Google Scholar 

  8. Baumgart DC, Le Berre C. Newer biologic and small-molecule therapies for inflammatory bowel disease. N Engl J Med. 2021;385:1302–15.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Y-Z, Li Y-Y. Inflammatory bowel disease: pathogenesis. World J Gastroenterol. 2014;20:91–9.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–34.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Aldars-García L, Gisbert JP, Chaparro M. Metabolomics insights into inflammatory Bowel disease: a comprehensive review. Pharmaceuticals (Basel). 2021;14:1190.

    Article  PubMed  Google Scholar 

  12. Rantalainen M, Bjerrum JT, Olsen J, Nielsen OH, Wang Y. Integrative transcriptomic and metabonomic molecular profiling of colonic mucosal biopsies indicates a unique molecular phenotype for ulcerative colitis. J Proteome Res. 2015;14:479–90.

    Article  CAS  PubMed  Google Scholar 

  13. Scoville EA, Allaman MM, Brown CT, Motley AK, Horst SN, Williams CS, et al. Alterations in lipid, amino acid, and energy metabolism distinguish Crohn’s Disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics. 2018;14:17.

    Article  PubMed  Google Scholar 

  14. Stephens NS, Siffledeen J, Su X, Murdoch TB, Fedorak RN, Slupsky CM. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. J Crohns Colitis. 2013;7:e42-48.

    Article  PubMed  Google Scholar 

  15. Connors J, Dawe N, Van Limbergen J. The role of succinate in the regulation of intestinal inflammation. Nutrients. 2018;11:25.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paturi G, Mandimika T, Butts CA, Zhu S, Roy NC, McNabb WC, et al. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a(−/−) mice, a model of inflammatory bowel diseases. Nutrition. 2012;28:324–30.

    Article  CAS  PubMed  Google Scholar 

  17. Zhong G, He C, Wang S, Lin C, Li M. Research progress on the mechanism of cholesterol-25-hydroxylase in intestinal immunity. Front Immunol. 2023;14:1241262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Valle M. Pyruvate carboxylase, structure and function. Subcell Biochem. 2017;83:291–322.

    Article  CAS  PubMed  Google Scholar 

  19. Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC, Attwood PV. Structure, mechanism and regulation of pyruvate carboxylase. Biochem J. 2008;413:369–87.

    Article  CAS  PubMed  Google Scholar 

  20. Lietzan AD, Lin Y, St MM. The role of biotin and oxamate in the carboxyltransferase reaction of pyruvate carboxylase. Arch Biochem Biophys. 2014;562:70–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shu Y, Yang N, Cheng N, Zou Z, Zhang W, Bei Y, et al. Intervening pyruvate carboxylase stunts tumor growth by strengthening anti-tumor actions of tumor-associated macrophages. Signal Transduct Target Ther. 2022;7:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 2014;71:2577–604.

    Article  CAS  PubMed  Google Scholar 

  23. Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, et al. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes. 2013;62:2183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fu A, van Rooyen L, Evans L, Armstrong N, Avizonis D, Kin T, et al. Glucose metabolism and pyruvate carboxylase enhance glutathione synthesis and restrict oxidative stress in pancreatic islets. Cell Rep. 2021;37: 110037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perry RJ, Camporez J-PG, Kursawe R, Titchenell PM, Zhang D, Perry CJ, et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160:745–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cappel DA, Deja S, Duarte JAG, Kucejova B, Iñigo M, Fletcher JA, et al. Pyruvate-carboxylase-mediated anaplerosis promotes antioxidant capacity by sustaining TCA cycle and redox metabolism in liver. Cell Metab. 2019;29:1291-1305.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang X, Xu L, Wang T, Xu J, Fan F, Zhang Y, et al. Pulsatilla decoction alleviates colitis by enhancing autophagy and regulating PI3K-Akt-mTORC1 signaling pathway. Mol Med Rep. 2022;25:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He L, Zhang Y, Kang N, Wang Y, Zhang Z, Zha Z, et al. Anemoside B4 attenuates nephrotoxicity of cisplatin without reducing anti-tumor activity of cisplatin. Phytomedicine. 2019;56:136–46.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Zha Z, Shen W, Li D, Kang N, Chen Z, et al. Anemoside B4 ameliorates TNBS-induced colitis through S100A9/MAPK/NF-κB signaling pathway. Chin Med. 2021;16:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. He J, Yuan R, Cui X, Cui Y, Han S, Wang Q-Q, et al. Anemoside B4 protects against Klebsiella pneumoniae- and influenza virus FM1-induced pneumonia via the TLR4/Myd88 signaling pathway in mice. Chin Med. 2020;15:68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang N, Shen W, Zhang Y, Su Z, Yang S, Liu Y, et al. Anti-inflammatory and immune-modulatory properties of anemoside B4 isolated from Pulsatilla chinensis in vivo. Phytomedicine. 2019;64:152934.

    Article  CAS  PubMed  Google Scholar 

  32. He L, Liu N, Wang K, Zhang L, Li D, Wang Z, et al. Rosamultin from Potentilla anserine L exhibits nephroprotection and antioxidant activity by regulating the reactive oxygen species/C/EBP homologous protein signaling pathway. Phytother Res. 2021;35:6343–58.

    Article  CAS  PubMed  Google Scholar 

  33. Kang N, Zou Y, Liang Q, Wang Y, Liu Y, Xu G, et al. Anemoside B4 inhibits enterovirus 71 propagation in mice through upregulating 14-3-3 expression and type I interferon responses. Acta Pharmacol Sin. 2022;43:977–91.

    Article  CAS  PubMed  Google Scholar 

  34. Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–7.

    Article  ADS  PubMed  Google Scholar 

  35. Lomenick B, Hao R, Jonai N, Chin RM, Aghajan M, Warburton S, et al. Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A. 2009;106:21984–9.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cao Z, Zhou Y, Zhu S, Feng J, Chen X, Liu S, et al. Pyruvate carboxylase activates the RIG-I-like receptor-mediated antiviral immune response by targeting the MAVS signalosome. Sci Rep. 2016;6:22002.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Korbecki J, Bajdak-Rusinek K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019;68:915–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G, et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature. 2013;498:109–12.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Yamane K, Indalao IL, Chida J, Yamamoto Y, Hanawa M, Kido H. Diisopropylamine dichloroacetate, a novel pyruvate dehydrogenase kinase 4 inhibitor, as a potential therapeutic agent for metabolic disorders and multiorgan failure in severe influenza. PLoS ONE. 2014;9: e98032.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Nunes NS, Chandran P, Sundby M, Visioli F, da Costa GF, Burks SR, et al. Therapeutic ultrasound attenuates DSS-induced colitis through the cholinergic anti-inflammatory pathway. EBioMedicine. 2019;45:495–510.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Gao L, Lee YM, Kalesh KA, Ong YS, Lim J, et al. Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. Pharmacol Ther. 2016;162:10–22.

    Article  CAS  PubMed  Google Scholar 

  42. Liao L, Song X, Wang L, Lv H, Chen J, Liu D, et al. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy. Proc Natl Acad Sci U S A. 2017;114:E5986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. St Maurice M, Reinhardt L, Surinya KH, Attwood PV, Wallace JC, Cleland WW, et al. Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme. Science. 2007;317:1076–9.

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Xiang S, Tong L. Crystal structures of human and Staphylococcus aureus pyruvate carboxylase and molecular insights into the carboxyltransfer reaction. Nat Struct Mol Biol. 2008;15:295–302.

    Article  CAS  PubMed  Google Scholar 

  45. Yuan R, He J, Huang L, Du L-J, Gao H, Xu Q, et al. Anemoside B4 protects against acute lung injury by attenuating inflammation through blocking NLRP3 inflammasome activation and TLR4 dimerization. J Immunol Res. 2020;2020:7502301.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Zou M, Han Q, Deng L, Weinshilboum RM. Therapeutic potential of triterpenoid saponin anemoside B4 from Pulsatilla chinensis. Pharmacol Res. 2020;160: 105079.

    Article  CAS  PubMed  Google Scholar 

  47. Adina-Zada A, Zeczycki TN, Attwood PV. Regulation of the structure and activity of pyruvate carboxylase by acetyl CoA. Arch Biochem Biophys. 2012;519:118–30.

    Article  CAS  PubMed  Google Scholar 

  48. Mills EL, O’Neill LA. Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur J Immunol. 2016;46:13–21.

    Article  CAS  PubMed  Google Scholar 

  49. Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, et al. VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun. 2017;8:1322.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. Pourfathi M, Xin Y, Rosalino M, Cereda M, Kadlecek S, Duncan I, et al. Pulmonary pyruvate metabolism as an index of inflammation and injury in a rat model of acute respiratory distress syndrome. NMR Biomed. 2020;33: e4380.

    Article  CAS  PubMed  Google Scholar 

  51. Li X, Song Y, Wang X, Fu C, Zhao F, Zou L, et al. The regulation of cell homeostasis and antiviral innate immunity by autophagy during classical swine fever virus infection. Emerg Microbes Infect. 2023;12:2164217.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dong G, Chen Q, Jiang F, Yu D, Mao Q, Xia W, et al. Diisopropylamine dichloroacetate enhances radiosensitization in esophageal squamous cell carcinoma by increasing mitochondria-derived reactive oxygen species levels. Oncotarget. 2016;7:68170–8.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Su L, Zhang H, Yan C, Chen A, Meng G, Wei J, et al. Superior anti-tumor efficacy of diisopropylamine dichloroacetate compared with dichloroacetate in a subcutaneous transplantation breast tumor model. Oncotarget. 2016;7:65721–31.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ma H, Zhou M, Duan W, Chen L, Wang L, Liu P. Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-κB/MAPK signaling pathway. Int Immunopharmacol. 2020;87: 106794.

    Article  CAS  PubMed  Google Scholar 

  55. Sheng Y, Chen Y, Zeng Z, Wu W, Wang J, Ma Y, et al. Identification of pyruvate carboxylase as the cellular target of natural bibenzyls with potent anticancer activity against hepatocellular carcinoma via metabolic reprogramming. J Med Chem. 2022;65:460–84.

    Article  CAS  PubMed  Google Scholar 

  56. Burkett DJ, Wyatt BN, Mews M, Bautista A, Engel R, Dockendorff C, et al. Evaluation of α-hydroxycinnamic acids as pyruvate carboxylase inhibitors. Bioorg Med Chem. 2019;27:4041–7.

    Article  CAS  PubMed  Google Scholar 

  57. Eler GJ, Santos IS, de Moraes AG, Comar JF, Peralta RM, Bracht A. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis. J Biochem Mol Toxicol. 2015;29:157–64.

    Article  CAS  PubMed  Google Scholar 

  58. Choi PH, Vu TMN, Pham HT, Woodward JJ, Turner MS, Tong L. Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proc Natl Acad Sci U S A. 2017;114:E7226–35.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hong J, Xie Z, Yang F, Jiang L, Jian T, Wang S, et al. Erianin suppresses proliferation and migration of cancer cells in a pyruvate carboxylase-dependent manner. Fitoterapia. 2022;157: 105136.

    Article  CAS  PubMed  Google Scholar 

  60. Lao-On U, Attwood PV, Jitrapakdee S. Roles of pyruvate carboxylase in human diseases: from diabetes to cancers and infection. J Mol Med (Berl). 2018;96:237–47.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 82073912, 82341087), the State Key Laboratory of Natural and Biomimetic Drugs, Traditional Chinese Medicine Technology Project of Jiangsu Province (No YB2020064), and a project funded by Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Funding

National Natural Science Foundation of China (No. 82073912, 82341087), the state key Laboratory of Natural Biomimetic Drugs, Traditional Chinese Medicine Technology Project of Jiangsu Province (No. YB2020064), PAPD.

Author information

Authors and Affiliations

Authors

Contributions

QHL and QRL conducted most experiments and wrote the manuscript; YLL and QMX designed the research, secured funding to support this project, and reviewed the manuscript; ZC, LJL, YL, HLJ, KXW, and MYX performed the experiments and interpreted the results; NXK, KJD, LK, GF, and HWG assisted with statistical analysis, interpreted the results, and consulted the related authors; SLJ, PFT, LZ, GQX, and SLY provided the technical support and partial funding support. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yan-li Liu or Qiong-ming Xu.

Ethics declarations

Conflict of interest

No conflicts of interest are declared by the authors.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2381 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Qh., Li, Qr., Chen, Z. et al. Anemoside B4, a new pyruvate carboxylase inhibitor, alleviates colitis by reprogramming macrophage function. Inflamm. Res. 73, 345–362 (2024). https://doi.org/10.1007/s00011-023-01840-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-023-01840-x

Keywords

Navigation