Skip to main content

Advertisement

Log in

TNF-α/calreticulin dual signaling induced NLRP3 inflammasome activation associated with HuR nucleocytoplasmic shuttling in rheumatoid arthritis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The present study was undertaken to validate whether TNF-α and calreticulin (CRT) serve as dual signaling to activate nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and HUVECs. The effect of human antigen R (HuR) in NLRP3 inflammasome activation was also explored in RA FLS.

Methods

Immunofluorescence was used to determine the expression of NLRP3 and adaptor protein apoptosis associated speck-like protein containing a CARD (ASC) in RA synovial tissue and HuR location in RA FLS. Western blot and quantitative real-time PCR were employed to measure the priming effect of NLRP3 inflammasome in cells and HuR expression in synovial tissue. The concentrations of IL-1β and IL-18 were detected by enzyme linked immunosorbent assay. Immunohistochemistry was used to visualize the expression of HuR in synovial tissue. HuR knockdown in RA FLS was achieved by siRNA-mediated gene silencing.

Results

Higher expression of NLRP3 and ASC in RA synovial tissue than those in osteoarthritis was detected. The staining of NLRP3, ASC and cleaved IL-1β were observed in FLS and vascular endothelial cells in RA synovium. Expression of NLRP3 and pro-IL-1β in RA FLS and HUVECs treated with TNF-α was increased. The pro-IL-18 expression was also enhanced in HUVECs, but not in RA FLS. TNF-α/CRT dual stimulation of cells gave rise to caspase-1 p20 expression and the secretion of IL-1β. The secreted IL-18 was also elevated in HUVECs but not in RA FLS. HuR expression was significantly elevated in RA synovial tissue. TNF-α initiated the nucleocytoplasmic shuttling of HuR in both FLS and HUVECs. The knockdown of HuR in FLS incubated with TNF-α led to reduced caspase-1 p20 protein expression and further resulted in decreased secretion of IL-1β in the presence of CRT.

Conclusions

TNF-α/CRT dual signaling induced NLRP3 inflammasome activation, which could be suppressed by HuR knockdown presumably due to the block of HuR translocating from nucleus to cytoplasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He Y, Hara H, Núñez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41(12):1012–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES, et al. Non transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bauernfeind F, Hornung V. Of inflammasomes and pathogens—sensing of microbes by the inflammasome. EMBO Mol Med. 2013;5(6):814–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Franchi L, Eigenbrod T, Núñez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 2009;183(2):792–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choulaki C, Papadaki G, Repa A, Kampouraki E, Kambas K, Ritis K, et al. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res Ther. 2015;17:257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ruscitti P, Cipriani P, Di Benedetto P, Liakouli V, Berardicurti O, Carubbi F, et al. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin (IL)-1βvia the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients. Clin Exp Immunol. 2015;182(1):35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang T, Zhu CL, Wang S, Mo LW, Yang GD, Hu J, et al. Role of NLRP3 and NLRP1 inflammasomes signaling pathways in pathogenesis of rheumatoid arthritis. Asian Pac J Trop Med. 2014;7(10):827–31.

    Article  CAS  PubMed  Google Scholar 

  9. Mathews RJ, Robinson JI, Battellino M, Wong C, Taylor JC. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis. 2014;73(6):1202–10.

    Article  CAS  PubMed  Google Scholar 

  10. Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P, et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 2014;512(7512):69–73.

    Article  CAS  PubMed  Google Scholar 

  11. Brennan CM, Steitz JA. HuR and mRNA stability. Cell Mol Life Sci. 2001;58(2):266–77.

    Article  CAS  PubMed  Google Scholar 

  12. Wang H, Ding N, Guo J, Xia J, Ruan Y. Dysregulation of TTP and HuR plays an important role in cancers. Tumour Biol. 2016;37(11):14451–61.

    Article  CAS  PubMed  Google Scholar 

  13. Ma WJ, Cheng S, Campbell C, Wright A, Furneaux H. Cloning and characterization of HuR, a ubiquitously expressed Elav-like protein. J Biol Chem. 1996;271(14):8144–51.

    Article  CAS  PubMed  Google Scholar 

  14. Simone LE, Keene JD. Mechanisms coordinating ELAV/Hu mRNA regulons. Curr Opin Genet Dev. 2013;23(1):35–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zucal C, D’Agostino V, Loffredo R, Mantelli B, Thongon N, Lal P, et al. Targeting the multifaceted HuR protein, benefits and caveats. Curr Drug Targets. 2015;16(5):499–515.

    Article  CAS  PubMed  Google Scholar 

  16. Srikantan S, Tominaga K, Gorospe M. Functional interplay between RNA-binding protein HuR and microRNAs. Curr Protein Pept Sci. 2012;13(4):372–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raghavan M, Wijeyesakere SJ, Peters LR, Del Cid N. Calreticulin in the immune system: ins and outs. 2013;34(1):13–21.

    CAS  Google Scholar 

  18. Tarr JM, Winyard PG, Ryan B, Harries LW, Haigh R, Viner N, et al. Extracellular calreticulin is present in the joints of patients with rheumatoid arthritis and inhibits FasL (CD95L)-mediated apoptosis of T cells. Arthritis Rheum. 2010;62(10):2919–29.

    Article  CAS  PubMed  Google Scholar 

  19. Ni M, Wei W, Wang Y, Zhang N, Ding H, Shen C, et al. Serum levels of calreticulin in correlation with disease activity in patients with rheumatoid arthritis. J Clin Immunol. 2013;33(5):947–53.

    Article  CAS  PubMed  Google Scholar 

  20. Ding H, Hong C, Wang Y, Liu J, Zhang N, Shen C, et al. Calreticulin promotes angiogenesis via activating nitric oxide signalling pathway in rheumatoid arthritis. Clin Exp Immunol. 2014;178(2):236–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–38.

    Article  CAS  PubMed  Google Scholar 

  22. Buckley CD, Pilling D, Lord JM, Akbar AN, Scheel-Toellner D, Salmon M. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 2001;22(4):199–204.

    Article  CAS  PubMed  Google Scholar 

  23. Sokolove J, Strand V. Rheumatoid arthritis classification criteria—it’s finally time to move on! Bull NYU Hosp Jt Dis. 2010;68(3):232–8.

    PubMed  Google Scholar 

  24. Schouten JS, Valkenburg HA. Classification criteria: methodological considerations and results from a 12 year following study in the general population. J Rheumatol Suppl. 1995;43:44–5.

    CAS  PubMed  Google Scholar 

  25. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Turner JD, Filer A. The role of the synovial fibroblast in rheumatoid arthritis pathogenesis. Curr Opin Rheumatol. 2015;27(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  27. Haneklaus M, O’Neil JD, Clark AR, Masters SL, O’Neill LAJ. The RNA-binding protein tristetraprolin (TTP) is a critical negative regulator of the NLRP3 inflammasome. J Biol Chem. 2017;292(17):6869–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol. 1996;14:397–440.

    Article  CAS  PubMed  Google Scholar 

  29. Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V, So A. Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology. 2010;129(2):178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bauernfeind F, Niepmann S, Knolle PA, Hornung V. Aging-associated TNF production primes inflammasome activation and NLRP3-related metabolic disturbances. J Immunol. 2016;197(7):2900–8.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao H, Lu M, Lin TY, Chen Z, Chen G, Wang WC, et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation. 2013;128(6):632–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suresh R, Chandrasekaran P, Sutterwala FS, Mosser DM. Complement-mediated ‘bystander’ damage initiates host NLRP3 inflammasome activation. J Cell Sci. 2016;129(9):1928–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fernandes-Alnemri T, Kang S, Anderson C, Sagara J, Fitzgerald KA, Alnemri ES. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. J Immunol. 2013;191(8):3995–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin KM, Hu W, Troutman TD, Jennings M, Brewer T, Li X, et al. IRAK-1 bypasses priming and directly links TLRs to rapid NLRP3 inflammasome activation. Proc Natl Acad Sci USA. 2014;111(2):775–80.

    Article  CAS  PubMed  Google Scholar 

  36. Lawlor KE, Vince JE. Ambiguities in NLRP3 inflammasome regulation: is there a role for mitochondria? Biochim Biophys Acta. 2014;1840(4):1433–40.

    Article  CAS  PubMed  Google Scholar 

  37. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 2007;14(9):1583–9.

    Article  CAS  PubMed  Google Scholar 

  38. Chu J, Thomas LM, Watkins SC, Franchi L, Núñez G, Salter RD. Cholesterol-dependent cytolysins induce rapid release of mature IL-1beta from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J Leukoc Biol. 2009;86(5):1227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265(1):35–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Goicoechea S, Orr AW, Pallero MA, Eggleton P, Murphy-Ullrich JE. Thrombospondin mediates focal adhesion disassembly through interactions with cell surface calreticulin. J Biol Chem. 2000;275(46):36358–68.

    Article  CAS  PubMed  Google Scholar 

  41. Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, et al. Cell surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123(2):321–34.

    Article  CAS  PubMed  Google Scholar 

  42. Kim TK, Ibelli AM, Mulenga A. Amblyomma americanum tick calreticulin binds C1q but does not inhibit activation of the classical complement cascade. Ticks Tick Borne Dis. 2015;6(1):91–101.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gilardini Montani MS, D’Eliseo D, Cirone M, Di Renzo L, Faggioni A, Santoni A, et al. Capsaicin-mediated apoptosis of human bladder cancer cells activates dendritic cells via CD91. Nutrition. 2015;31(4):578–81.

    Article  CAS  PubMed  Google Scholar 

  44. Jiao Y, Ding H, Huang S, Liu Y, Sun X, Wei W, et al. Bcl-XL and Mcl-1 upregulation by calreticulin promotes apoptosis resistance of fibroblast-like synoviocytes via activation of PI3K/Akt and STAT3 pathways in rheumatoid arthritis. Clin Exp Rheumatol. 2018;36(5):841–9.

    PubMed  Google Scholar 

  45. Tiedje C, Ronkina N, Tehrani M, Dhamija S, Laass K, Holtmann H, et al. The p38/MK2-driven exchange between tristetraprolin and HuR regulates AU-rich element-dependent translation. PLoS Genet. 2012;8(9):e1002977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doller A, Pfeilschifter J, Eberhardt W. Signalling pathways regulating nucleo-cytoplasmic shuttling of the mRNA-binding protein HuR. Cell Signal. 2008;20(12):2165–73.

    Article  CAS  PubMed  Google Scholar 

  47. Dulos J, Wijnands FP, van den Hurk-van Alebeek JA, van Vugt MJ, Rullmann JA, Schot JJ, et al. p38 inhibition and not MK2 inhibition enhances the secretion of chemokines from TNF-α activated rheumatoid arthritis fibroblast-like synoviocytes. Clin Exp Rheumatol. 2013;31(4):515–25.

    CAS  PubMed  Google Scholar 

  48. Ross EA, Naylor AJ, O’Neil JD, Crowley T, Ridley ML, Crowe J, et al. Treatment of inflammatory arthritis via targeting of tristetraprolin, a master regulator of pro-inflammatory gene expression. Ann Rheum Dis. 2017;76(3):612–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Clement SL, Scheckel C, Stoecklin G, Lykke-Andersen J. Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol. 2011;31(2):256–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin City (no. 14JCYBJC25600).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed in a substantive and intellectual manner.

Corresponding authors

Correspondence to Jun Ma or Fang Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 739 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wei, W., Wang, Y. et al. TNF-α/calreticulin dual signaling induced NLRP3 inflammasome activation associated with HuR nucleocytoplasmic shuttling in rheumatoid arthritis. Inflamm. Res. 68, 597–611 (2019). https://doi.org/10.1007/s00011-019-01244-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-019-01244-w

Keywords

Navigation