Skip to main content

Advertisement

Log in

Naringenin mitigates titanium dioxide (TiO2)-induced chronic arthritis in mice: role of oxidative stress, cytokines, and NFκB

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effect and mechanisms of naringenin in TiO2-induced chronic arthritis in mice, a model resembling prosthesis and implant inflammation.

Treatment

Flavonoids are antioxidant and anti-inflammatory molecules with important anti-inflammatory effect. Mice were daily treated with the flavonoid naringenin (16.7–150 mg/kg, orally) for 30 days starting 24 h after intra-articular knee injection of 3 mg of TiO2.

Methods

TiO2-induced arthritis resembles cases of aseptic inflammation induced by prosthesis and/or implants. Mice were stimulated with 3 mg of TiO2 and after 24 h mice started to be treated with naringenin. The disease phenotype, treatment toxicity, histopathological damage, oxidative stress, cytokine expression and NFκB were evaluated after 30 days of treatment.

Results

Naringenin inhibited TiO2-induced mechanical hyperalgesia (96%), edema (77%) and leukocyte recruitment (74%) without inducing toxicity. Naringenin inhibited histopathological index (HE, 49%), cartilage damage (Toluidine blue tibial staining 49%, and proteoglycan 98%), and bone resorption (TRAP-stained 73%). These effects were accompanied by inhibition of oxidative stress (gp91phox 93%, NBT 83%, and TBARS 41%) cytokine mRNA expression (IL-33 82%, TNFα 76%, pro-IL-1β 100%, and IL-6 61%), and NFκB activation (100%).

Conclusion

Naringenin ameliorates TiO2-induced chronic arthritis inducing analgesic and anti-inflammatory responses with improvement in the histopathological index, cartilage damage, and bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Siddiqui MMA, Yeo SJ, Sivaiah P, Chia S-L, Chin PL, Lo NN. Function and quality of life in patients with recurvatum deformity after primary total knee arthroplasty: a review of our joint registry. J Arthroplasty. 2012;27(6):1106–10. https://doi.org/10.1016/j.arth.2011.10.013.

    Article  PubMed  Google Scholar 

  2. Soever LJ, Mackay C, Saryeddine T, Davis AM, Flannery JF, Jaglal SB, et al. Educational needs of patients undergoing total joint arthroplasty. Physiother Can. 2010;62(3):206–14. https://doi.org/10.3138/physio.62.3.206.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maradit Kremers H, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, et al. Prevalence of total hip and knee replacement in the United States. J Bone Jt Surg Am. 2015;97(17):1386–97. https://doi.org/10.2106/JBJS.N.01141.

    Article  Google Scholar 

  4. Carr AJ, Robertsson O, Graves S, Price AJ, Arden NK, Judge A, et al. Knee replacement. Lancet. 2012;379(9823):1331–40. https://doi.org/10.1016/S0140-6736(11)60752-6.

    Article  PubMed  Google Scholar 

  5. Cobelli N, Scharf B, Crisi GM, Hardin J, Santambrogio L. Mediators of the inflammatory response to joint replacement devices. Nat Publ Group. 2011;7(10):600–8. https://doi.org/10.1038/nrrheum.2011.128.

    Article  CAS  Google Scholar 

  6. Goodman SB. Wear particles, periprosthetic osteolysis and the immune system. Biomaterials. 2007;28(34):5044–8. https://doi.org/10.1016/j.biomaterials.2007.06.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gurr J-R, Wang ASS, Chen C-H, Jan K-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1–2):66–73. https://doi.org/10.1016/j.tox.2005.05.007.

    Article  CAS  PubMed  Google Scholar 

  8. Apostu D, Lucaciu O, Lucaciu GDO, Crisan B, Crisan L, Baciut M, et al. Systemic drugs that influence titanium implant osseointegration. Drug Metab Rev. 2016:1–46. https://doi.org/10.1080/03602532.2016.1277737.

    Article  CAS  Google Scholar 

  9. Dörner T, Haas J, Loddenkemper C, von Baehr V, Salama A. Implant-related inflammatory arthritis. Nat Clin Pract Rheumatol. 2006;2(1):53–6. https://doi.org/10.1038/ncprheum0087.

    Article  PubMed  Google Scholar 

  10. Borghi SM, Mizokami SS, Pinho-Ribeiro FA, Fattori V, Crespigio J, Clemente-Napimoga JT, et al. The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. J Nutr Biochem. 2017;53:81–95. https://doi.org/10.1016/j.jnutbio.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  11. Verri WA, Vicentini FTMC, Baracat MM, Georgetti SR, Cardoso RDR, Cunha TM, et al. Flavonoids as anti-inflammatory and analgesic drugs: mechanisms of action and perspectives in the development of pharmaceutical forms. In: Atta-ur-Rahman, editor. Studies in Natural Products Chemistry; 2012. pp. 297–330.

    Chapter  Google Scholar 

  12. Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH, et al. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun. 2001;284(3):681–8. https://doi.org/10.1006/bbrc.2001.5001.

    Article  CAS  PubMed  Google Scholar 

  13. Sun H, Dong T, Zhang A, Yang J, Yan G, Sakurai T, et al. Pharmacokinetics of hesperetin and naringenin in the Zhi Zhu Wan, a traditional Chinese medicinal formulae, and its pharmacodynamics study. Phytother Res. 2013;27(9):1345–51. https://doi.org/10.1002/ptr.4867.

    Article  CAS  PubMed  Google Scholar 

  14. Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC, Pinho-Ribeiro FA, Georgetti SR, et al. Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-PKG-KATPChannel signaling pathway. PLoS One. 2016;11(4):e0153015-e. https://doi.org/10.1371/journal.pone.0153015.

    Article  CAS  Google Scholar 

  15. Pinho-Ribeiro FA, Zarpelon AC, Mizokami SS, Borghi SM, Bordignon J, Silva RL, et al. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. J Nutr Biochem. 2016;33:8–14. https://doi.org/10.1016/j.jnutbio.2016.03.013.

    Article  CAS  PubMed  Google Scholar 

  16. Pinho-Ribeiro FA, Zarpelon AC, Fattori V, Manchope MF, Mizokami SS, Casagrande R, et al. Naringenin reduces inflammatory pain in mice. Neuropharmacology. 2016;105:508–19. https://doi.org/10.1016/j.neuropharm.2016.02.019.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Fan Y. Lung injury induced by TiO2 nanoparticles depends on their structural features: Size, shape, crystal phases, and surface coating. Int J Mol Sci. 2014;15(12):22258–78. https://doi.org/10.3390/ijms151222258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ashley NT, Weil ZM, Nelson RJ. Inflammation: mechanisms, costs, and natural variation. Annu Rev Ecol Evol Syst. 2012;43:385–406. https://doi.org/10.1146/annurev-ecolsys-040212-092530.

    Article  Google Scholar 

  19. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–38. https://doi.org/10.1016/S0140-6736(16)30173-8.

    Article  CAS  PubMed  Google Scholar 

  20. Wang W, Wu C, Tian B, Liu X, Zhai Z, Qu X, et al. The Inhibition of RANKL-induced osteoclastogenesis through the suppression of p38 signaling pathway by naringenin and attenuation of titanium-particle-induced osteolysis. Int J Mol Sci. 2014;15(12):21913–34. https://doi.org/10.3390/ijms151221913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang JX, Fan YB, Gao Y, Hu QH, Wang TC. TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials. 2009;30(27):4590–600. https://doi.org/10.1016/j.biomaterials.2009.05.008.

    Article  CAS  PubMed  Google Scholar 

  22. Guerrero ATG, Verri WA, Cunha TM, Silva TA, Rocha FAC, Ferreira SH, et al. Hypernociception elicited by tibio-tarsal joint flexion in mice: a novel experimental arthritis model for pharmacological screening. Pharmacol Biochem Behav. 2006;84(2):244–51. https://doi.org/10.1016/j.pbb.2006.05.008.

    Article  CAS  PubMed  Google Scholar 

  23. Yamanaka H, Goto K, Miyamoto K. Scoring evaluation for histopathological features of synovium in patients with rheumatoid arthritis during anti-tumor necrosis factor therapy. Rheumatol Int. 2010;30(3):409–13. https://doi.org/10.1007/s00296-009-1158-2.

    Article  CAS  PubMed  Google Scholar 

  24. Sun J, Hua B, Livingston EW, Taves S, Johansen PB, Hoffman M, et al. Abnormal joint and bone wound healing in hemophilia mice is improved by extending factor IX activity after hemarthrosis. Blood. 2017;129(15):2161–71. https://doi.org/10.1182/blood-2016-08-734053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Casagrande R, Georgetti SR, Verri WA, Dorta DJ, dos Santos AC, Fonseca MJV. Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. J Photochem Photobiol B Biol. 2006;84(1):21–7. https://doi.org/10.1016/j.jphotobiol.2006.01.006.

    Article  CAS  Google Scholar 

  26. Verri WA, Souto FO, Vieira SM, Almeida SCL, Fukada SY, Xu D, et al. IL-33 induces neutrophil migration in rheumatoid arthritis and is a target of anti-TNF therapy. Ann Rheum Dis. 2010;69(9):1697–703. https://doi.org/10.1136/ard.2009.122655.

    Article  CAS  PubMed  Google Scholar 

  27. Vieira SM, Cunha TM, Franca RF, Pinto LG, Talbot J, Turato WM, et al. Joint NOD2/RIPK2 signaling regulates IL-17 axis and contributes to the development of experimental arthritis. J Immunol. 2012;188(10):5116–22. https://doi.org/10.4049/jimmunol.1004190.

    Article  CAS  PubMed  Google Scholar 

  28. Hohmann MSN, Cardoso RDR, Pinho-Ribeiro FA, Crespigio J, Cunha TM, Alves-Filho JC, et al. 5-lipoxygenase deficiency reduces acetaminophen-induced hepatotoxicity and lethality. BioMed Res Int. 2013;2013:627046-. https://doi.org/10.1155/2013/627046.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Guedes RP, Bosco LD, Teixeira CM, Araújo ASR, Llesuy S, Belló-Klein A, et al. Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res. 2006;31(5):603–9. https://doi.org/10.1007/s11064-006-9058-2.

    Article  CAS  PubMed  Google Scholar 

  30. O’Brien W, Fissel BM, Maeda Y, Yan J, Ge X, Gravallese EM, et al. RANK-independent osteoclast formation and bone erosion in inflammatory arthritis. Arthritis Rheumatol. 2016;68(12):2889–900. https://doi.org/10.1002/art.39837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G, et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 2016;75(6):1187–95. https://doi.org/10.1136/annrheumdis-2014-207137.

    Article  CAS  PubMed  Google Scholar 

  32. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4(3):181–9. https://doi.org/10.1038/nri1312.

    Article  CAS  PubMed  Google Scholar 

  33. Liu B, Tai Y, Achanta S, Kaelberer MM, Caceres AI, Shao X, et al. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc Natl Acad Sci. 2016;113(47):E7572–9. https://doi.org/10.1073/pnas.1606608113.

    Article  CAS  PubMed  Google Scholar 

  34. Jin X, Gereau RW. Acute p38-mediated modulation of tetrodotoxin-resistant sodium channels in mouse sensory neurons by tumor necrosis factor. J Neurosci. 2006;26(1):246–55. https://doi.org/10.1523/JNEUROSCI.3858-05.2006.

    Article  CAS  PubMed  Google Scholar 

  35. Binshtok AM, Wang H, Zimmermann K, Amaya F, Vardeh D, Shi L, et al. Nociceptors are interleukin-1 sensors. J Neurosci. 2008;28(52):14062–73. https://doi.org/10.1523/JNEUROSCI.3795-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ebbinghaus M, Segond von Banchet G, Massier J, Gajda M, Brauer R, Kress M, et al. Interleukin-6-dependent influence of nociceptive sensory neurons on antigen-induced arthritis. Arthritis Res Ther. 2015;17:334. https://doi.org/10.1186/s13075-015-0858-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vieira SM, Lemos HP, Grespan R, Napimoga MH, Dal-Secco D, Freitas A, et al. A crucial role for TNF-alpha in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5. Br J Pharmacol. 2009;158(3):779–89. https://doi.org/10.1111/j.1476-5381.2009.00367.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mascarenhas DP, Pereira MS, Manin GZ, Hori JI, Zamboni DS. Interleukin 1 receptor-driven neutrophil recruitment accounts to MyD88-dependent pulmonary clearance of legionella pneumophila infection in vivo. J Infect Dis. 2015;211(2):322–30. https://doi.org/10.1093/infdis/jiu430.

    Article  CAS  PubMed  Google Scholar 

  39. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity. 1997;6(3):315–25.

    Article  CAS  Google Scholar 

  40. Lan F, Yuan B, Liu T, Luo X, Huang P, Liu Y, et al. Interleukin-33 facilitates neutrophil recruitment and bacterial clearance in S. aureus-caused peritonitis. Mol Immunol. 2016;72:74–80. https://doi.org/10.1016/j.molimm.2016.03.004.

    Article  CAS  PubMed  Google Scholar 

  41. Alves-Filho JC, Sonego F, Souto FO, Freitas A, Verri WA Jr, Auxiliadora-Martins M, et al. Interleukin-33 attenuates sepsis by enhancing neutrophil influx to the site of infection. Nat Med. 2010;16(6):708–12. https://doi.org/10.1038/nm.2156.

    Article  CAS  PubMed  Google Scholar 

  42. Poynter ME, Irvin CG, Janssen-Heininger YM. A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. J Immunol. 2003;170(12):6257–65.

    Article  CAS  Google Scholar 

  43. Anrather J, Racchumi G, Iadecola C. NF-kappaB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem. 2006;281(9):5657–67. https://doi.org/10.1074/jbc.M506172200.

    Article  CAS  PubMed  Google Scholar 

  44. Harris WH. Wear and periprosthetic osteolysis the problem. Clin Orthop Relat Res. 2001(393):66–70.

    Article  Google Scholar 

  45. Long M, Rack HJ. Titanium alloys in total joint replacement–a materials science perspective. Biomaterials. 1998;19(18):1621–39.

    Article  CAS  Google Scholar 

  46. Chobot V, Hadacek F. Exploration of pro-oxidant and antioxidant activities of the flavonoid myricetin. Redox Rep. 2011;16(6):242–7. https://doi.org/10.1179/1351000211Y.0000000015.

    Article  CAS  PubMed  Google Scholar 

  47. Straub I, Mohr F, Stab J, Konrad M, Philipp SE, Oberwinkler J, et al. Citrus fruit and fabacea secondary metabolites potently and selectively block TRPM3. Br J Pharmacol. 2013;168(8):1835–50. https://doi.org/10.1111/bph.12076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manchope MF, Casagrande R, Verri JWA, Manchope MF, Casagrande R, Verri JWA. Naringenin: an analgesic and anti-inflammatory citrus flavanone. Oncotarget. 2017;8(3):3766–7. https://doi.org/10.18632/oncotarget.14084.

    Article  PubMed  Google Scholar 

  49. Murakawa M, Yamaoka K, Tanaka Y, Fukuda Y. Involvement of tumor necrosis factor (TNF)-alpha in phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin edema in mice. Biochem Pharmacol. 2006;71(9):1331–6. https://doi.org/10.1016/j.bcp.2006.01.005.

    Article  CAS  PubMed  Google Scholar 

  50. Seven A, Guzel S, Seymen O, Civelek S, Bolayirli M, Yigit G, et al. Nitric oxide synthase inhibition by L-NAME in streptozotocin induced diabetic rats: impacts on oxidative stress. Tohoku J Exp Med. 2003;199(4):205–10.

    Article  CAS  Google Scholar 

  51. Salvemini D, Wang ZQ, Wyatt PS, Bourdon DM, Marino MH, Manning PT, et al. Nitric oxide: a key mediator in the early and late phase of carrageenan-induced rat paw inflammation. Br J Pharmacol. 1996;118(4):829–38.

    Article  CAS  Google Scholar 

  52. Fattori V, Amaral FA, Verri WA. Neutrophils and arthritis: role in disease and pharmacological perspectives. Pharmacol Res. 2016. https://doi.org/10.1016/j.phrs.2016.01.027.

    Article  PubMed  Google Scholar 

  53. Scott DL, Wolfe F, Huizinga TWJ. Rheumatoid arthritis. Lancet. 2010;376(9746):1094–108. https://doi.org/10.1016/S0140-6736(10)60826-4.

    Article  PubMed  Google Scholar 

  54. Kongpichitchoke T, Hsu J-L, Huang T-C. Number of hydroxyl groups on the B-Ring of flavonoids affects their antioxidant activity and interaction with phorbol ester binding site of PKCδ C1B domain: in vitro and in silico studies. J Agric Food Chem. 2015;63(18):4580–6. https://doi.org/10.1021/acs.jafc.5b00312.

    Article  CAS  PubMed  Google Scholar 

  55. Wang CC, Guo L, Tian FD, An N, Luo L, Hao RH, et al. Naringenin regulates production of matrix metalloproteinases in the knee-joint and primary cultured articular chondrocytes and alleviates pain in rat osteoarthritis model. Braz J Med Biol Res. 2017;50(4):e5714. https://doi.org/10.1590/1414-431X20165714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murphy G, Lee MH. What are the roles of metalloproteinases in cartilage and bone damage? Ann Rheum Dis. 2005;64(Suppl 4):iv44–7. https://doi.org/10.1136/ard.2005.042465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lin PM, Chen CT, Torzilli PA. Increased stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and collagen damage in cyclically load-injured articular cartilage. Osteoarthritis Cartilage. 2004;12(6):485–96. https://doi.org/10.1016/j.joca.2004.02.012.

    Article  PubMed  Google Scholar 

  58. Steinert AF, Noth U, Tuan RS. Concepts in gene therapy for cartilage repair. Injury. 2008;39(Suppl 1):97–113. https://doi.org/10.1016/j.injury.2008.01.034.

    Article  Google Scholar 

  59. Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292(4):490-. https://doi.org/10.1001/jama.292.4.490.

    Article  CAS  PubMed  Google Scholar 

  60. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. https://doi.org/10.1038/nature01658.

    Article  CAS  PubMed  Google Scholar 

  61. Chakravarti A, Raquil M-A, Tessier P, Poubelle PE. Surface RANKL of Toll-like receptor 4–stimulated human neutrophils activates osteoclastic bone resorption. Blood. 2009;114(8).

    Article  CAS  Google Scholar 

  62. Al-Rejaie SS, Aleisa AM, Abuohashish HM, Parmar MY, Ola MS, Al-Hosaini AA, et al. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol Res. 2015;37(10):924–33. https://doi.org/10.1179/1743132815Y.0000000079.

    Article  CAS  PubMed  Google Scholar 

  63. Nishimura FdCY, de Almeida AC, Ratti BA, Ueda-Nakamura T, Nakamura CV, Ximenes VF, et al. Antioxidant effects of quercetin and naringenin are associated with impaired neutrophil microbicidal activity. Evid Based Complement Alternat Med. 2013;2013:795916-. https://doi.org/10.1155/2013/795916.

    Article  PubMed Central  Google Scholar 

  64. Gonçalves DM, Chiasson S, Girard D. Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles. Toxicol In Vitro. 2010;24(3):1002–8. https://doi.org/10.1016/j.tiv.2009.12.007.

    Article  CAS  PubMed  Google Scholar 

  65. Masoud R, Bizouarn T, Trepout S, Wien F, Baciou L, Marco S, et al. Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase. PLoS One. 2015;10(12):e0144829-e. https://doi.org/10.1371/journal.pone.0144829.

    Article  CAS  Google Scholar 

  66. Callaway DA, Jiang JX. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab. 2015;33(4):359–70. https://doi.org/10.1007/s00774-015-0656-4.

    Article  CAS  PubMed  Google Scholar 

  67. Kim MS, Yang YM, Son A, Tian YS, Lee SI, Kang SW, et al. RANKL-mediated reactive oxygen species pathway that induces long lasting Ca2+ oscillations essential for osteoclastogenesis. J Biol Chem. 2010;285(10):6913–21. https://doi.org/10.1074/jbc.M109.051557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rees MD, Hawkins CL, Davies MJ. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates. Biochem J. 2004;381(Pt 1):175–84. https://doi.org/10.1042/BJ20040148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage. 2003;11(10):747–55.

    Article  CAS  Google Scholar 

  70. Nojiri H, Saita Y, Morikawa D, Kobayashi K, Tsuda C, Miyazaki T, et al. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res. 2011;26(11):2682–94. https://doi.org/10.1002/jbmr.489.

    Article  CAS  PubMed  Google Scholar 

  71. Kang IS, Kim C. NADPH oxidase gp91(phox) contributes to RANKL-induced osteoclast differentiation by upregulating NFATc1. Sci Rep. 2016;6:38014. https://doi.org/10.1038/srep38014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pinho-Ribeiro FA, Fattori V, Zarpelon AC, Borghi SM, Staurengo-Ferrari L, Carvalho TT, et al. Pyrrolidine dithiocarbamate inhibits superoxide anion-induced pain and inflammation in the paw skin and spinal cord by targeting NF-κB and oxidative stress. Inflammopharmacology. 2016;24(2–3):97–107. https://doi.org/10.1007/s10787-016-0266-3.

    Article  CAS  PubMed  Google Scholar 

  73. St Pierre CA, Chan M, Iwakura Y, Ayers DC, Kurt-Jones EA, Finberg RW. Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-particles. J Orthop Res. 2010;28(11):1418–24. https://doi.org/10.1002/jor.21149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Borgognoni CF, Mormann M, Qu Y, Schäfer M, Langer K, Öztürk C, et al. Reaction of human macrophages on protein corona covered TiO2 nanoparticles. Nanomedicine: nanotechnology, biology, and medicine. 2015;11(2):275–82. https://doi.org/10.1016/j.nano.2014.10.001.

    Article  CAS  Google Scholar 

  75. Vitkov L, Krautgartner W-D, Obermayer A, Stoiber W, Hannig M, Klappacher M, et al. The initial inflammatory response to bioactive implants is characterized by NETosis. PLoS One. 2015;10(3):e0121359-e. https://doi.org/10.1371/journal.pone.0121359.

    Article  CAS  Google Scholar 

  76. Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol. 2014;10(10):593–601. https://doi.org/10.1038/nrrheum.2014.80.

    Article  CAS  PubMed  Google Scholar 

  77. Freischmidt A, Jürgenliemk G, Kraus B, Okpanyi SN, Müller J, Kelber O, et al. Contribution of flavonoids and catechol to the reduction of ICAM-1 expression in endothelial cells by a standardised Willow bark extract. Phytomedicine. 2012;19(3–4):245–52. https://doi.org/10.1016/j.phymed.2011.08.065.

    Article  CAS  PubMed  Google Scholar 

  78. Martinelli R, Gegg M, Longbottom R, Adamson P, Turowski P, Greenwood J. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol Biol Cell. 2009;20(3):995–1005. https://doi.org/10.1091/mbc.E08-06-0636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dal Secco D, Moreira AP, Freitas A, Silva JS, Rossi MA, Ferreira SH, et al. Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: role of soluble guanylate cyclase. Nitric Oxide. 2006;15(1):77–86. https://doi.org/10.1016/j.niox.2006.02.004.

    Article  CAS  PubMed  Google Scholar 

  80. Kevil CG, Patel RP, Bullard DC. Essential role of ICAM-1 in mediating monocyte adhesion to aortic endothelial cells. Am J Physiol Cell Physiol. 2001;281(5):C1442-7.

    Article  Google Scholar 

  81. Verri WA, Cunha TM, Parada CA, Poole S, Cunha FQ, Ferreira SH. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. 2006;112(1):116–38. https://doi.org/10.1016/j.pharmthera.2006.04.001.

    Article  CAS  PubMed  Google Scholar 

  82. Simmonds RE, Foxwell BM. Signalling, inflammation and arthritis: NF- B and its relevance to arthritis and inflammation. Rheumatology. 2008;47(5):584–90. https://doi.org/10.1093/rheumatology/kem298.

    Article  CAS  PubMed  Google Scholar 

  83. Yu M, Qi X, Moreno JL, Farber DL, Keegan AD. NF-κB signaling participates in both RANKL- and IL-4-induced macrophage fusion: receptor cross-talk leads to alterations in NF-κB pathways. J Immunol. 2011;187(4):1797–806. https://doi.org/10.4049/jimmunol.1002628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meena R, Kumar S, Paulraj R. Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain. J Nanopart Res. 2015;17(1):49-. https://doi.org/10.1007/s11051-015-2868-x.

    Article  CAS  Google Scholar 

  85. Prasad RY, Simmons SO, Killius MG, Zucker RM, Kligerman AD, Blackman CF, et al. Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS-2B cells: role of cell culture media. Environ Mol Mutagen. 2014;55(4):336–42. https://doi.org/10.1002/em.21848.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.R.F.D.P., A.Z.Z., and M.M.B for the technical support and T.H.Z for the support in the Adobe Illustrator. This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), São Paulo research Foundation (FAPESP) under grant agreements number 2011/19670-0 (Thematic project) and 2013/08216-2 (Center for Research in Inflammatory Disease-CRID), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; Finance Code 001), and Programa de Pesquisa para o SUS (PPSUS) grant supported by Ministério da Ciência, Tecnologia e Inovação (MCTI), Secretaria da Ciência, Tecnologia e Ensino Superior (SETI), Decit/SCTIE/MS through CNPq with the support of Fundação Araucária and Secretaria da Saúde do Estado do Paraná (SESA-PR), and Parana State Government (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldiceu A. Verri Jr..

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: Jason J. McDougall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manchope, M.F., Artero, N.A., Fattori, V. et al. Naringenin mitigates titanium dioxide (TiO2)-induced chronic arthritis in mice: role of oxidative stress, cytokines, and NFκB. Inflamm. Res. 67, 997–1012 (2018). https://doi.org/10.1007/s00011-018-1195-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-018-1195-y

Keywords

Navigation