Skip to main content

Advertisement

Log in

Autophagy upregulation promotes macrophages to escape mesoporous silica nanoparticle (MSN)-induced NF-κB-dependent inflammation

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Our previous studies (Int J Nanomed 10:22, 2015) have indicated that a single large dose of mesoporous silica nanoparticles (MSNs) can induce severe and selective nephrotoxicity, which is closely related to inflammation mediated by the NF-κB pathway. However, the effect of MSNs on other organs and the interactions of nanomaterials with biological systems remain rudimentary.

Objective

This study aimed to clarify the biological behaviour and influence of MSNs on macrophages.

Methods

The mice received a single intraperitoneal injection of a suspension of 150, 300 of 600 mg/kg MSNs, and RAW 264.7 cells were treated with MSNs at various concentrations and times. Cell viability was determined by MTT assay and LDH release assay. The NF-κB pathway and the target proinflammatory cytokines IL-1β and TNF-α were determined by western blotting or ELISA. Autophagy is considered as an emerging mechanism of nanomaterials. So the autophagic ultrastructural analysis, the determination of Beclin-1 and LC3 expression, and the calculation of LC3II dots were employed to verify autophagy activation. In addition, RNA interference, autophagy agonist and inhibitor were used to explore the role of autophagy in inflammation.

Results

The results indicated that MSNs are internalized into macrophages and induce cytotoxicity in a dose- and time-dependent manner. The NF-κB pathway, IL-1β and TNF-α were induced and released by MSNs. The levels of Beclin-1 and LC3II dots were obviously up-regulated by MSNs, which indicated that autophagy was induced in the MSN-treated cells. Moreover, the enhanced autophagy can attenuate the inflammation mediated by the NF-κB pathway, whereas the inhibition of autophagy can contribute to inflammation.

Conclusions

In summary, our results suggest that autophagy may be a possible protective factor in inflammation induced by MSNs in macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

3-MA:

3-Methyladenine

BET:

Brunauer–Emmett–Teller

BJH:

Barrett–Joyner–Halenda

CTAB:

Cetyltrimethyl ammonium bromide

DAPI:

4,6-Diamidino-2-phenylindole dihydrochloride

DMEM:

Dulbecco’s modified Eagle medium

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

GFP:

Green fluorescent protein

LDH:

Lactate dehydrogenase

LPS:

Lipopolysaccharide

MSNs:

Mesoporous silica nanoparticles

mTOR:

Mammalian target of rapamycin

MTT:

3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide

PBS:

Phosphate-buffered saline

RAPA:

Rapamycin

RES:

Reticular endothelial system

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscope

TEOS:

Tetraethyl orthosilicate

References

  1. Liu H, et al. Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew Chem Int Ed Engl. 2011;50(4):891–5.

    Article  CAS  PubMed  Google Scholar 

  2. Slowing II, et al. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88.

    Article  CAS  PubMed  Google Scholar 

  3. Slowing II, et al. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small. 2009;5(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  4. Tao Z, et al. Mesoporous silica nanoparticles inhibit cellular respiration. Nano Lett. 2008;8(5):1517–26.

    Article  CAS  PubMed  Google Scholar 

  5. Fu C, et al. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565–75.

    Article  CAS  PubMed  Google Scholar 

  6. Hassankhani R, et al. In vivo toxicity of orally administrated silicon dioxide nanoparticles in healthy adult mice. Environ Sci Pollut Res Int. 2015;22(2):1127–32.

    Article  CAS  PubMed  Google Scholar 

  7. Duan J, et al. Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Part Fibre Toxicol. 2014;11:50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Xi C, et al. Renal interstitial fibrosis induced by high-dose mesoporous silica nanoparticles via the NF-κB signaling pathway. Int J Nanomed. 2015;10:22.

    Google Scholar 

  9. Fischer HC, Chan WC. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol. 2007;18(6):565–71.

    Article  CAS  PubMed  Google Scholar 

  10. Soo-Jin C, Jae-Min O, Jin-Ho C. Human-related application and nanotoxicology of inorganic particles: complementary aspects. J Mater Chem. 2008;18(0959–9428):6.

    Google Scholar 

  11. Liu T, et al. Pathological mechanisms of liver injury caused by continuous intraperitoneal injection of silica nanoparticles. Biomaterials. 2012;33(7):2399–407.

    Article  CAS  PubMed  Google Scholar 

  12. Liu T, et al. Single and repeated dose toxicity of mesoporous hollow silica nanoparticles in intravenously exposed mice. Biomaterials. 2011;32(6):1657–68.

    Article  CAS  PubMed  Google Scholar 

  13. Herd HL, Malugin A, Ghandehari H. Silica nanoconstruct cellular toleration threshold in vitro. J Control Release. 2011;153(1):40–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park EJ, et al. Magnetic iron oxide nanoparticles induce autophagy preceding apoptosis through mitochondrial damage and ER stress in RAW264.7 cells. Toxicol In Vitro. 2014;28(8):1402–12.

    Article  CAS  PubMed  Google Scholar 

  15. Roy R, et al. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3 K/Akt/mTOR inhibition. Toxicol Lett. 2014;227(1):29–40.

    Article  CAS  PubMed  Google Scholar 

  16. Li R, et al. Interference in autophagosome fusion by rare earth nanoparticles disrupts autophagic flux and regulation of an interleukin-1β producing Inflammasome. ACS Nano. 2014;8(10):10280–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zabirnyk O, Yezhelyev M, Seleverstov O. Nanoparticles as a novel class of autophagy activators. Autophagy. 2007;3(3):278–81.

    Article  CAS  PubMed  Google Scholar 

  18. Teng RJ, et al. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2012;302(7):L651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nowak JS, et al. Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicol Lett. 2014;224(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  20. Hussain S, Garantziotis S. Interplay between apoptotic and autophagy pathways after exposure to cerium dioxide nanoparticles in human monocytes. Autophagy. 2013;9(1):101–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012;9:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhou J, et al. Triptolide-induced oxidative stress involved with Nrf2 contribute to cardiomyocyte apoptosis through mitochondrial dependent pathways. Toxicol Lett. 2014;230(3):454–66.

    Article  CAS  PubMed  Google Scholar 

  23. Lee S, Yun HS, Kim SH. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials. 2011;32(35):9434–43.

    Article  CAS  PubMed  Google Scholar 

  24. Everett DH. IUPAC manual of symbols and terminology. Pure Appl Chem. 1972;31:61.

    Article  Google Scholar 

  25. Sun W, et al. Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem. 2008;391(6):2119–25.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang JY, et al. Methyl-1-hydroxy-2-naphthoate, a novel naphthol derivative, inhibits lipopolysaccharide-induced inflammatory response in macrophages via suppression of NF-κB, JNK and p38 MAPK pathways. Inflamm Res. 2011;60(9):851–9.

    Article  CAS  PubMed  Google Scholar 

  27. Wang QS, et al. Dietary blue pigments derived from genipin, attenuate inflammation by inhibiting LPS-induced iNOS and COX-2 expression via the NF-κB inactivation. PLoS ONE. 2012;7(3):e34122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tanida I. Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal. 2011;14(11):2201–14.

    Article  CAS  PubMed  Google Scholar 

  29. Yoshioka A, et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. Int J Oncol. 2008;33(3):461–8.

    CAS  PubMed  Google Scholar 

  30. Guo GF, et al. Autophagy-related proteins Beclin-1 and LC3 predict cetuximab efficacy in advanced colorectal cancer. World J Gastroenterol. 2011;17(43):4779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei Y, et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell. 2013;154(6):1269–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kabeya Y, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19(21):5720–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimura S, et al. Monitoring autophagy in mammalian cultured cells through the dynamics of LC3. Methods Enzymol. 2009;452:1–12.

    Article  CAS  PubMed  Google Scholar 

  34. Hönscheid P, Datta K, Muders MH. Autophagy: detection, regulation and its role in cancer and therapy response. Int J Radiat Biol. 2014;90(8):628–35.

    Article  PubMed  Google Scholar 

  35. Ryter SW, Cloonan SM, Choi AM. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells. 2013;36(1):7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan T, et al. Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience. 2009;164(2):541–51.

    Article  CAS  PubMed  Google Scholar 

  37. Wu YT, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem. 2010;285(14):10850–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hwang AA, et al. Functional nanovalves on protein‐coated nanoparticles for in vitro and in vivo controlled drug delivery. Small. 2015;11(3):319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roggers R, et al. The practicality of mesoporous silica nanoparticles as drug delivery devices and progress toward this goal. AAPS PharmSciTech. 2014;15:1–9.

    Article  Google Scholar 

  40. Pan L, et al. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression. Adv Mater. 2014;26(39):6742–8.

    Article  CAS  PubMed  Google Scholar 

  41. Nabeshi H, et al. Systemic distribution, nuclear entry and cytotoxicity of amorphous nanosilica following topical application. Biomaterials. 2011;32(11):2713–24.

    Article  CAS  PubMed  Google Scholar 

  42. Nabeshi H, et al. Amorphous nanosilicas induce consumptive coagulopathy after systemic exposure. Nanotechnology. 2012;23(4):045101.

    Article  PubMed  Google Scholar 

  43. Li PZ, et al. An efficient method to isolate and culture mouse Kupffer cells. Immunol Lett. 2014;158(1–2):52–6.

    Article  CAS  PubMed  Google Scholar 

  44. Fisichella M, et al. Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. Toxicol In Vitro. 2009;23(4):697–703.

    Article  CAS  PubMed  Google Scholar 

  45. Smith AM, et al. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv Drug Deliv Rev. 2008;60(11):1226–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tao Z, et al. Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials. Chem Res Toxicol. 2009;22(11):1869–80.

    Article  CAS  PubMed  Google Scholar 

  47. Mühlfeld C, Gehr P, Rothen-Rutishauser B. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly. 2008;138(27–28):387–91.

    PubMed  Google Scholar 

  48. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kang JL, et al. Src tyrosine kinases mediate crystalline silica-induced NF-kappaB activation through tyrosine phosphorylation of IkappaB-alpha and p65 NF-kappaB in RAW 264.7 macrophages. Toxicol Sci. 2006;90(2):470–7.

    Article  CAS  PubMed  Google Scholar 

  50. Mirza A, et al. A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. Am J Physiol. 1997;272(2 Pt 1):G281–8.

    CAS  PubMed  Google Scholar 

  51. Di Gioacchino M, et al. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells. Sci Total Environ. 2008;392(1):50–8.

    Article  PubMed  Google Scholar 

  52. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang M, et al. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem Pharmacol. 2013;86(3):410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hartford CM, Ratain MJ. Rapamycin: something old, something new, sometimes borrowed and now renewed. Clin Pharmacol Ther. 2007;82(4):381–8.

    Article  CAS  PubMed  Google Scholar 

  55. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol. 2011;12(1):21–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kmieć Z, et al. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001;161:1–151 (III–XIII).

    Article  Google Scholar 

  57. Hoek JB, Pastorino JG. Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol. 2002;27(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  58. Tsutsui H, Nishiguchi S. Importance of Kupffer cells in the development of acute liver injuries in mice. Int J Mol Sci. 2014;15(5):7711–30.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nishimori H, et al. Histological analysis of 70-nm silica particles-induced chronic toxicity in mice. Eur J Pharm Biopharm. 2009;72(3):626–9.

    Article  CAS  PubMed  Google Scholar 

  60. Xue Y, et al. SiO2 nanoparticle-induced impairment of mitochondrial energy metabolism in hepatocytes directly and through a Kupffer cell-mediated pathway in vitro. Int J Nanomedicine. 2014;9:2891–903.

    PubMed  PubMed Central  Google Scholar 

  61. Duan J, et al. Silica nanoparticles induce autophagy and endothelial dysfunction via the PI3 K/Akt/mTOR signaling pathway. Int J Nanomedicine. 2014;9:5131–41.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Qin Y, et al. Graphene quantum dots induce apoptosis, autophagy, and inflammatory response via p38 mitogen-activated protein kinase and nuclear factor-κB mediated signaling pathways in activated THP-1 macrophages. Toxicology. 2015;327:62–76. doi:10.1016/j.tox.2014.10.011.

    Article  CAS  PubMed  Google Scholar 

  63. Lin J, et al. Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy. 2014;10(11):2006–20.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Zhou or Shuzhang Du.

Ethics declarations

Conflict of interest

None.

Additional information

Responsible Editor: John Di Battista.

C. Xi and J. Zhou contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, C., Zhou, J., Du, S. et al. Autophagy upregulation promotes macrophages to escape mesoporous silica nanoparticle (MSN)-induced NF-κB-dependent inflammation. Inflamm. Res. 65, 325–341 (2016). https://doi.org/10.1007/s00011-016-0919-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-016-0919-0

Keywords

Navigation