Skip to main content

Advertisement

Log in

Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Aim and objective

Two structurally related flavonoids found in Cyclopia subternata, namely vicenin-2 and scolymoside, were examined for its effects on inflammatory responses by monitoring the effects of vicenin-2 and scolymoside on lipopolysaccharide (LPS)-mediated vascular inflammatory responses.

Methods

The anti-inflammatory activities of vicenin-2 and scolymoside were determined by measuring permeability, monocytes adhesion and migration, and activation of pro-inflammatory proteins in LPS-activated HUVECs and mice.

Results

We found that post-treatment of each compound inhibited LPS-induced barrier disruption, expression of cell adhesion molecules (CAMs), and adhesion/transendothelial migration of human neutrophils to human endothelial cells. Each compound induced potent inhibition of phorbol-12-myristate 13-acetate (PMA) and LPS-induced endothelial cell protein C receptor (EPCR) shedding. It also suppressed LPS-induced hyperpermeability and leukocytes migration in vivo. Furthermore, each compound suppressed the production of tumor necrosis factor-α (TNF-α) or Interleukin (IL)-6 and the activation of nuclear factor-κB (NF-κB) or extracellular regulated kinases (ERK) 1/2 by LPS. Moreover, post-treatment with each compound resulted in reduced LPS-induced lethal endotoxemia.

Conclusion

Vicenin-2 and scolymoside possess anti-inflammatory functions by inhibiting hyperpermeability, expression of CAMs, and adhesion and migration of leukocytes, thereby endorsing its usefulness as a therapy for vascular inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zimmerman GA, McIntyre TM, Prescott SM. Adhesion and signaling in vascular cell–cell interactions. J Clin Invest. 1996;98:1699–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ross R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  CAS  PubMed  Google Scholar 

  3. Mosnier LO, Zlokovic BV, Griffin JH. The cytoprotective protein C pathway. Blood. 2007;109:3161–72.

    Article  CAS  PubMed  Google Scholar 

  4. Esmon CT. The endothelial protein C receptor. Curr Opin Hematol. 2006;13:382–5.

    Article  CAS  PubMed  Google Scholar 

  5. Fukudome K, Esmon CT. Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J Biol Chem. 1994;269:26486–91.

    CAS  PubMed  Google Scholar 

  6. Stearns-Kurosawa DJ, Kurosawa S, Mollica JS, Ferrell GL, Esmon CT. The endothelial cell protein C receptor augments protein C activation by the thrombin-thrombomodulin complex. Proc Natl Acad Sci U S A. 1996;93:10212–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kurosawa S, Stearns-Kurosawa DJ, Hidari N, Esmon CT. Identification of functional endothelial protein C receptor in human plasma. J Clin Invest. 1997;100:411–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kurosawa S, Stearns-Kurosawa DJ, Carson CW, D’Angelo A, Della Valle P, Esmon CT. Plasma levels of endothelial cell protein C receptor are elevated in patients with sepsis and systemic lupus erythematosus: lack of correlation with thrombomodulin suggests involvement of different pathological processes. Blood. 1998;91:725–7.

    CAS  PubMed  Google Scholar 

  9. Xu J, Qu D, Esmon NL, Esmon CT. Metalloproteolytic release of endothelial cell protein C receptor. J Biol Chem. 2000;275:6038–44.

    Article  CAS  PubMed  Google Scholar 

  10. Liaw PC, Neuenschwander PF, Smirnov MD, Esmon CT. Mechanisms by which soluble endothelial cell protein C receptor modulates protein C and activated protein C function. J Biol Chem. 2000;275:5447–52.

    Article  CAS  PubMed  Google Scholar 

  11. Prior RL, Cao G. Antioxidant capacity and polyphenolic components of teas: implications for altering in vivo antioxidant status. Proc Soc Exp Biol Med. 1999;220:255–61.

    Article  CAS  PubMed  Google Scholar 

  12. Warren CP. Antioxidant effects of herbs. Lancet. 1999;353:676.

    Article  CAS  PubMed  Google Scholar 

  13. Joubert E, Joubert ME, Bester C, De Beer D, De Lange JH. Honeybush (Cyclopia spp.): from local cottage industry to global markets—The catalytic and supporting role of research. South African Journal of Botany. 2011;77:889–907.

    Google Scholar 

  14. Sanchez GM, Re L, Giuliani A, Nunez-Selles AJ, Davison GP, Leon-Fernandez OS. Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol Res. 2000;42:565–73.

    Article  CAS  PubMed  Google Scholar 

  15. Leiro JM, Alvarez E, Arranz JA, Siso IG, Orallo F. In vitro effects of mangiferin on superoxide concentrations and expression of the inducible nitric oxide synthase, tumour necrosis factor-alpha and transforming growth factor-beta genes. Biochem Pharmacol. 2003;65:1361–71.

    Article  CAS  PubMed  Google Scholar 

  16. Pardo Andreu GL, Maurmann N, Reolon GK, de Farias CB, Schwartsmann G, Delgado R, et al. Mangiferin, a naturally occurring glucoxilxanthone improves long-term object recognition memory in rats. Eur J Pharmacol. 2010;635:124–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kazuno S, Yanagida M, Shindo N, Murayama K. Mass spectrometric identification and quantification of glycosyl flavonoids, including dihydrochalcones with neutral loss scan mode. Anal Biochem. 2005;347:182–92.

    Article  CAS  PubMed  Google Scholar 

  18. Kim D-C, Lee W, Bae J-S. Vascular anti-inflammatory effects of curcumin on HMGB1-mediated responses in vitro. Inflamm Res. 2011;60:1161–8.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou W, Oh J, Wonhwa L, Kwak S, Li W, Chittiboyina AG, et al. The first cyclomegastigmane rhododendroside A from Rhododendron brachycarpum alleviates HMGB1-induced sepsis. Biochim Biophys Acta Gen Subj. 2014;1840:2042–9.

    Article  CAS  Google Scholar 

  20. Lee W, Ku S-K, Bae JW, Bae J-S. Inhibitory effects of lycopene on HMGB1-mediated pro-inflammatory responses in both cellular and animal models. Food Chem Toxicol. 2012;50:1826–33.

    Article  CAS  PubMed  Google Scholar 

  21. Bae JS, Lee W, Nam JO, Kim JE, Kim SW, Kim IS. Transforming growth factor beta-induced protein promotes severe vascular inflammatory responses. Am J Respir Crit Care Med. 2014;189:779–86.

    Article  PubMed  Google Scholar 

  22. Ku SK, Han MS, Lee MY, Lee YM, Bae JS. Inhibitory effects of oroxylin A on endothelial protein C receptor shedding in vitro and in vivo. BMB Rep. 2014;47:336–41.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Ku SK, Bae JS. Antithrombotic activities of sulforaphane via inhibiting platelet aggregation and FIIa/FXa. Arch Pharm Res. 2014;37:1454–63.

    Article  CAS  PubMed  Google Scholar 

  24. Hofbauer R, Moser D, Salfinger H, Frass M, Kapiotis S. Sufentanil inhibits migration of human leukocytes through human endothelial cell monolayers. Anesth Analg. 1998;87:1181–5.

    CAS  PubMed  Google Scholar 

  25. Bae JS, Rezaie AR. Thrombin inhibits HMGB1-mediated proinflammatory signaling responses when endothelial protein C receptor is occupied by its natural ligand. BMB Rep. 2013;46:544–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bae JS, Rezaie AR. Activated protein C inhibits high mobility group box 1 signaling in endothelial cells. Blood. 2011;118:3952–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kim TH, Ku SK, Bae JS. Inhibitory effects of kaempferol-3-O-sophoroside on HMGB1-mediated proinflammatory responses. Food Chem Toxicol. 2011;50:1118–23.

    Article  PubMed  Google Scholar 

  28. Ku SK, Yang EJ, Song KS, Bae JS. Rosmarinic acid down-regulates endothelial protein C receptor shedding in vitro and in vivo. Food Chem Toxicol. 2013;59:311–5.

    Article  CAS  PubMed  Google Scholar 

  29. Miller MA, Meyer AS, Beste MT, Lasisi Z, Reddy S, Jeng KW, et al. ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A. 2013;110:E2074–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lee W, Ku SK, Bae JS. Emodin-6-O-beta-D-glucoside down-regulates endothelial protein C receptor shedding. Arch Pharm Res. 2013;36:1160–5.

    Article  CAS  PubMed  Google Scholar 

  31. Che W, Lerner-Marmarosh N, Huang Q, Osawa M, Ohta S, Yoshizumi M, et al. Insulin-like growth factor-1 enhances inflammatory responses in endothelial cells: role of Gab1 and MEKK3 in TNF-alpha-induced c-Jun and NF-kappaB activation and adhesion molecule expression. Circ Res. 2002;90:1222–30.

    Article  CAS  PubMed  Google Scholar 

  32. Bae JW, Bae JS. Barrier protective effects of lycopene in human endothelial cells. Inflamm Res. 2011;60:751–8.

    Article  CAS  PubMed  Google Scholar 

  33. Kim TH, Ku SK, Lee IC, Bae JS. Anti-inflammatory functions of purpurogallin in LPS-activated human endothelial cells. BMB Rep. 2012;45:200–5.

    Article  CAS  PubMed  Google Scholar 

  34. Bae JS, Lee W, Rezaie AR. Polyphosphate elicits proinflammatory responses that are counteracted by activated protein C in both cellular and animal models. J Thromb Haemost. 2012;10:1145–51.

  35. Lee JD, Huh JE, Jeon G, Yang HR, Woo HS, Choi DY, et al. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflammation-related cytokines and angiogenic factor in rheumatoid arthritic fibroblast-like synovial cells and in vivo models. Int Immunopharmacol. 2009;9:268–76.

    Article  CAS  PubMed  Google Scholar 

  36. Fuseler JW, Merrill DM, Rogers JA, Grisham MB, Wolf RE. Analysis and quantitation of NF-kappaB nuclear translocation in tumor necrosis factor alpha (TNF-alpha) activated vascular endothelial cells. Microsc Microanal. 2006;12:269–76.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas MJ, Chen Q, Franklin C, Rudel LL. A comparison of the kinetics of low-density lipoprotein oxidation initiated by copper or by azobis (2-amidinopropane). Free Radic Biol Med. 1997;23:927–35.

    Article  CAS  PubMed  Google Scholar 

  38. Bowry VW, Stocker R. Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J Am Chem Soc. 1993;115:6029–44.

    Article  CAS  Google Scholar 

  39. Niki E, Saito M, Yoshikawa Y, Yamamoto Y, Kamiya Y. Oxidation of Lipids, XII. Inhibition of Oxidation of Soybean Phosphatidylcholine and Methyl Linoleate in Aqueous Dispersions by Uric Acid. Bull Chem Soc Japan. 1986;59:471–7.

    Article  CAS  Google Scholar 

  40. Hasinoff BB, Patel D, O’Hara KA. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol. 2008;74:1722–8.

    Article  CAS  PubMed  Google Scholar 

  41. Berman RS, Frew JD, Martin W. Endotoxin-induced arterial endothelial barrier dysfunction assessed by an in vitro model. Br J Pharmacol. 1993;110:1282–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Goldblum SE, Ding X, Brann TW, Campbell-Washington J. Bacterial lipopolysaccharide induces actin reorganization, intercellular gap formation, and endothelial barrier dysfunction in pulmonary vascular endothelial cells: concurrent F-actin depolymerization and new actin synthesis. J Cell Physiol. 1993;157:13–23.

    Article  CAS  PubMed  Google Scholar 

  43. Lee W, Ku SK, Bae JS. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo. Inflammation. 2015;38:110–25.

    Article  CAS  PubMed  Google Scholar 

  44. Bae JS, Lee W, Son HN, Lee YM, Kim IS. Anti-transforming growth factor beta-induced protein antibody ameliorates vascular barrier dysfunction and improves survival in sepsis. Acta Physiol (Oxf). 2014;212:306–15.

    Article  CAS  Google Scholar 

  45. Lee W, Ku SK, Bae JS. Vascular barrier protective effects of orientin and isoorientin in LPS-induced inflammation in vitro and in vivo. Vascul Pharmacol. 2014;62:3–14.

    Article  CAS  PubMed  Google Scholar 

  46. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001;21:15–23.

    Article  CAS  PubMed  Google Scholar 

  47. Walton KL, Holt L, Sartor RB. Lipopolysaccharide activates innate immune responses in murine intestinal myofibroblasts through multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol. 2009;296:G601–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Mittelstadt PR, Salvador JM, Fornace AJ Jr, Ashwell JD. Activating p38 MAPK: new tricks for an old kinase. Cell Cycle. 2005;4:1189–92.

    Article  CAS  PubMed  Google Scholar 

  49. Schnittler HJ, Schneider SW, Raifer H, Luo F, Dieterich P, Just I, et al. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pflugers Arch. 2001;442:675–87.

    Article  CAS  PubMed  Google Scholar 

  50. Friedl J, Puhlmann M, Bartlett DL, Libutti SK, Turner EN, Gnant MF, et al. Induction of permeability across endothelial cell monolayers by tumor necrosis factor (TNF) occurs via a tissue factor-dependent mechanism: relationship between the procoagulant and permeability effects of TNF. Blood. 2002;100:1334–9.

    CAS  PubMed  Google Scholar 

  51. Petrache I, Birukova A, Ramirez SI, Garcia JG, Verin AD. The role of the microtubules in tumor necrosis factor-alpha-induced endothelial cell permeability. Am J Respir Cell Mol Biol. 2003;28:574–81.

    Article  CAS  PubMed  Google Scholar 

  52. Komarova YA, Mehta D, Malik AB. Dual regulation of endothelial junctional permeability. Sci STKE 2007; 2007:re8.

  53. Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol. 2001;91:1487–500.

    CAS  PubMed  Google Scholar 

  54. Qu D, Wang Y, Song Y, Esmon NL, Esmon CT. The Ser219– > Gly dimorphism of the endothelial protein C receptor contributes to the higher soluble protein levels observed in individuals with the A3 haplotype. J Thromb Haemost. 2006;4:229–35.

    Article  CAS  PubMed  Google Scholar 

  55. Qu D, Wang Y, Esmon NL, Esmon CT. Regulated endothelial protein C receptor shedding is mediated by tumor necrosis factor-alpha converting enzyme/ADAM17. J Thromb Haemost. 2007;5:395–402.

    Article  CAS  PubMed  Google Scholar 

  56. Menschikowski M, Hagelgans A, Eisenhofer G, Siegert G. Regulation of endothelial protein C receptor shedding by cytokines is mediated through differential activation of MAP kinase signaling pathways. Exp Cell Res. 2009;315:2673–82.

    Article  CAS  PubMed  Google Scholar 

  57. Frenette PS, Wagner DD. Adhesion molecules—part II: blood vessels and blood cells. N Engl J Med. 1996;335:43–5.

    Article  CAS  PubMed  Google Scholar 

  58. Frenette PS, Wagner DD. Adhesion molecules—part 1. N Engl J Med. 1996;334:1526–9.

    Article  CAS  PubMed  Google Scholar 

  59. Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke. 2002;33:2115–22.

    Article  CAS  PubMed  Google Scholar 

  60. Ulbrich H, Eriksson EE, Lindbom L. Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci. 2003;24:640–7.

    Article  CAS  PubMed  Google Scholar 

  61. Marui N, Offermann MK, Swerlick R, Kunsch C, Rosen CA, Ahmad M, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells. J Clin Invest. 1993;92:1866–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Wung BS, Ni CW, Wang DL. ICAM-1 induction by TNFalpha and IL-6 is mediated by distinct pathways via Rac in endothelial cells. J Biomed Sci. 2005;12:91–101.

    Article  CAS  PubMed  Google Scholar 

  63. Lin WN, Luo SF, Wu CB, Lin CC, Yang CM. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: involvement of Src/EGFR/PI3-K/Akt pathway. Toxicol Appl Pharmacol. 2008;228:256–68.

    Article  CAS  PubMed  Google Scholar 

  64. Ruiz-Torres MP, Perez-Rivero G, Rodriguez-Puyol M, Rodriguez-Puyol D, Diez-Marques ML. The leukocyte-endothelial cell interactions are modulated by extracellular matrix proteins. Cell Physiol Biochem. 2006;17:221–32.

    Article  CAS  PubMed  Google Scholar 

  65. Javaid K, Rahman A, Anwar KN, Frey RS, Minshall RD, Malik AB. Tumor necrosis factor-alpha induces early-onset endothelial adhesivity by protein kinase Czeta-dependent activation of intercellular adhesion molecule-1. Circ Res. 2003;92:1089–97.

    Article  CAS  PubMed  Google Scholar 

  66. Lockyer JM, Colladay JS, Alperin-Lea WL, Hammond T, Buda AJ. Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circ Res. 1998;82:314–20.

    Article  CAS  PubMed  Google Scholar 

  67. Yamagami H, Yamagami S, Inoki T, Amano S, Miyata K. The effects of proinflammatory cytokines on cytokine-chemokine gene expression profiles in the human corneal endothelium. Invest Ophthalmol Vis Sci. 2003;44:514–20.

    Article  PubMed  Google Scholar 

  68. Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev. 2010;90:1507–46.

    Article  CAS  PubMed  Google Scholar 

  69. Ajmone-Cat MA, De Simone R, Nicolini A, Minghetti L. Effects of phosphatidylserine on p38 mitogen activated protein kinase, cyclic AMP responding element binding protein and nuclear factor-kappaB activation in resting and activated microglial cells. J Neurochem. 2003;84:413–6.

    Article  CAS  PubMed  Google Scholar 

  70. Osmond RI, Sheehan A, Borowicz R, Barnett E, Harvey G, Turner C, et al. GPCR screening via ERK 1/2: a novel platform for screening G protein-coupled receptors. J Biomol Screen. 2005;10:730–7.

    Article  CAS  PubMed  Google Scholar 

  71. Covert MW, Leung TH, Gaston JE, Baltimore D. Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science. 2005;309:1854–7.

    Article  CAS  PubMed  Google Scholar 

  72. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C—dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–45.

    Article  CAS  PubMed  Google Scholar 

  74. Wang G, Gong Y, Burczynski FJ, Hasinoff BB. Cell lysis with dimethyl sulphoxide produces stable homogeneous solutions in the dichlorofluorescein oxidative stress assay. Free Radic Res. 2008;42:435–41.

    Article  CAS  PubMed  Google Scholar 

  75. Bae JS. Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Arch Pharm Res. 2012;35:1511–23.

    Article  CAS  PubMed  Google Scholar 

  76. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–91.

    Article  CAS  PubMed  Google Scholar 

  77. Bhatia M, He M, Zhang H, Moochhala S. Sepsis as a model of SIRS. Front Biosci. 2009;14:4703–11.

    Article  CAS  Google Scholar 

  78. Bierhaus A, Chen J, Liliensiek B, Nawroth PP. LPS and cytokine-activated endothelium. Semin Thromb Hemost. 2000;26:571–87.

    Article  CAS  PubMed  Google Scholar 

  79. Hawiger J. Innate immunity and inflammation: a transcriptional paradigm. Immunol Res. 2001;23:99–109.

    Article  CAS  PubMed  Google Scholar 

  80. Marcus BC, Wyble CW, Hynes KL, Gewertz BL. Cytokine-induced increases in endothelial permeability occur after adhesion molecule expression. Surgery. 1996;120:411–6 (discussion 416–7).

    Article  CAS  PubMed  Google Scholar 

  81. Beynon HL, Haskard DO, Davies KA, Haroutunian R, Walport MJ. Combinations of low concentrations of cytokines and acute agonists synergize in increasing the permeability of endothelial monolayers. Clin Exp Immunol. 1993;91:314–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Sedgwick JB, Menon I, Gern JE, Busse WW. Effects of inflammatory cytokines on the permeability of human lung microvascular endothelial cell monolayers and differential eosinophil transmigration. J Allergy Clin Immunol. 2002;110:752–6.

    Article  CAS  PubMed  Google Scholar 

  83. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995;375:408–11.

    Article  CAS  PubMed  Google Scholar 

  84. Cuzzocrea S, Chatterjee PK, Mazzon E, Dugo L, De Sarro A, Van de Loo FA, et al. Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock. 2002;18:169–76.

    Article  PubMed  Google Scholar 

  85. Gunnett CA, Lund DD, McDowell AK, Faraci FM, Heistad DD. Mechanisms of inducible nitric oxide synthase-mediated vascular dysfunction. Arterioscler Thromb Vasc Biol. 2005;25:1617–22.

    Article  CAS  PubMed  Google Scholar 

  86. Hauser B, Matejovic M, Radermacher P. Nitric oxide, leukocytes and microvascular permeability: causality or bystanders? Crit Care. 2008;12:104.

    Article  PubMed Central  PubMed  Google Scholar 

  87. Chung EY, Kim BH, Hong JT, Lee CK, Ahn B, Nam SY, et al. Resveratrol down-regulates interferon-gamma-inducible inflammatory genes in macrophages: molecular mechanism via decreased STAT-1 activation. J Nutr Biochem. 2011;22:902–9.

    Article  CAS  PubMed  Google Scholar 

  88. Hoshino J, Park EJ, Kondratyuk TP, Marler L, Pezzuto JM, van Breemen RB, et al. Selective synthesis and biological evaluation of sulfate-conjugated resveratrol metabolites. J Med Chem. 2010;53:5033–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Mollace V, Colasanti M, Muscoli C, Lauro GM, Iannone M, Rotiroti D, et al. The effect of nitric oxide on cytokine-induced release of PGE2 by human cultured astroglial cells. Br J Pharmacol. 1998;124:742–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Wu CY, Hsieh HL, Jou MJ, Yang CM. Involvement of p42/p44 MAPK, p38 MAPK, JNK and nuclear factor-kappa B in interleukin-1beta-induced matrix metalloproteinase-9 expression in rat brain astrocytes. J Neurochem. 2004;90:1477–88.

    Article  CAS  PubMed  Google Scholar 

  91. Liu SF, Malik AB. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol. 2006;290:L622–45.

    Article  CAS  PubMed  Google Scholar 

  92. Fiebich BL, Butcher RD, Gebicke-Haerter PJ. Protein kinase C-mediated regulation of inducible nitric oxide synthase expression in cultured microglial cells. J Neuroimmunol. 1998;92:170–8.

    Article  CAS  PubMed  Google Scholar 

  93. Jeon KI, Xu X, Aizawa T, Lim JH, Jono H, Kwon DS, et al. Vinpocetine inhibits NF-kappaB-dependent inflammation via an IKK-dependent but PDE-independent mechanism. Proc Natl Acad Sci U S A. 2010;107:9795–800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.

    Article  CAS  PubMed  Google Scholar 

  95. Ghosh S, May MJ, Kopp EB. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol. 1998;16:225–60.

    Article  CAS  PubMed  Google Scholar 

  96. Borbiev T, Verin AD, Birukova A, Liu F, Crow MT, Garcia JG. Role of CaM kinase II and ERK activation in thrombin-induced endothelial cell barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2003;285:L43–54.

    Article  CAS  PubMed  Google Scholar 

  97. Wadgaonkar R, Linz-McGillem L, Zaiman AL, Garcia JG. Endothelial cell myosin light chain kinase (MLCK) regulates TNFalpha-induced NFkappaB activity. J Cell Biochem. 2005;94:351–64.

    Article  CAS  PubMed  Google Scholar 

  98. Chiou Y-S, Wu J-C, Huang Q, Shahidi F, Wang Y-J, Ho C-T, et al. Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Functional Foods. 2014;7:3–25.

    Article  CAS  Google Scholar 

  99. Dong D, Xu L, Yin L, Qi Y, Peng J. Naringin prevents carbon tetrachloride-induced acute liver injury in mice. J Functional Foods. 2015;12:179–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF- 2012R1A5A2A42671316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Sup Bae.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Responsible Editor: Liwu Li.

H. Kang and S.-K. Ku contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H., Ku, SK., Jung, B. et al. Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo. Inflamm. Res. 64, 1005–1021 (2015). https://doi.org/10.1007/s00011-015-0886-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0886-x

Keywords

Navigation