Skip to main content

Advertisement

Log in

Tumor necrosis factor-α, monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 increase during the development of a 2,4-dinitrofluorobenzene-induced immediate-type dermatitis in rats

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Background

Due to the steadily increasing incidence of atopic dermatitis, there is a great medical need for new therapies and improved animal models.

Objective

To provide more detailed analysis of a Sprague–Dawley rat dermatitis model.

Methods

Sprague–Dawley rats were actively sensitized by intraperitoneal injections of dinitrophenylated ovalbumin (DNP-OVA) plus alum. Skin reactions were elicited by repeated epicutaneous challenge with 2,4-dinitrofluorobenzene (DNFB).

Results

The ear thickness exhibited a significant increase from the first challenge. A relatively steep increase in ear thickness was observed at the fifth DNFB application. After the fifth DNFB application, total serum immunoglobulin (Ig) E and IgG1 levels reached a plateau at 1 h compared with the normal group. The peak production of tumor necrosis factor (TNF)-α and monocyte chemoattractant protein (MCP)-1 was found at 1 h, while that of intercellular adhesion molecule (ICAM)-1 was found at 24 h. Infiltration of CD4+ T cells, CD8+ T cells, eosinophils and mast cells increased in the skin lesion.

Conclusions

The indices such as thickness and inflammatory cell infiltration in the lesional skin were increased by repeated hapten application; TNF-α, MCP-1 and ICAM-1 increased with the development of the dermatitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boguniewicz M, Leung DYM. Atopic dermatitis. J Allergy Clin Immunol. 2006;117:475–80.

    Article  Google Scholar 

  2. Kitagaki H, Fujisawa S, Watanabe K, et al. Immediate-type hypersensitivity response followed by a late reaction is induced by repeated epicutaneous application of contact sensitizing agents in mice. J Invest Dermatol. 1995;105:749–55.

    Article  PubMed  CAS  Google Scholar 

  3. Ray MC, Tharp MD, Sullivan TJ, et al. Contact hypersensitivity reactions to dinitrofluorobenzene mediated by monoclonal IgE anti-DNP antibodies. J Immunol. 1983;131:1096–102.

    PubMed  CAS  Google Scholar 

  4. Katayama I, Tanei R, Yokozeki H, et al. Induction of eczematous skin reaction in experimentally induced hyperplastic skin of BALB/c mice by monoclonal anti-DNP IgE antibody: possible implications for skin lesion formation in atopic dermatitis. Int Arch Allerg Appl Immunol. 1990;93:148–54.

    Article  CAS  Google Scholar 

  5. Arfsten DP, Garrett CM, Jederberg WW, Wilfong ER, McDougal JN. Characterization of the skin penetration of a hydrocarbon-based weapons maintenance oil. J Occup Environ Hyg. 2006;3:457–64.

    Article  PubMed  CAS  Google Scholar 

  6. Sato K, Sugibayashi K, Morimoto Y. Species differences in percutaneous absorption of nicorandil. J Pharm Sci. 1991;80:104–7.

    Article  PubMed  CAS  Google Scholar 

  7. Mahler J. NTP technical report on the toxicity studies of black newsprint inks administered topically to F344/N rats and C3H mice. Toxic Rep Ser. 1992;17:E1–2.

    Google Scholar 

  8. Fujii Y, Takeuchi H, Tanaka K, et al. Effects of FK506 (tacrolimus hydrate) on chronic oxazolone-induced dermatitis in rats. Eur J Pharmacol. 2002;456:115–21.

    Article  PubMed  CAS  Google Scholar 

  9. Fujii Y, Takeuchi H, Sakuma S, Sengoku T, Takakura S. Characterization of a 2,4-dinitrochlorobenzene-induced chronic dermatitis model in rats. Skin Pharmacol Physiol. 2009;22:240–7.

    Article  PubMed  CAS  Google Scholar 

  10. Nojima H, Carstens E. 5-Hydroxytryptamine (5-HT)2 receptor involvement in acute 5-HT-evoked scratching but not in allergic pruritus induced by dinitrofluorobenzene in rats. J Pharmacol Exp Ther. 2003;306(1):245–52.

    Article  PubMed  CAS  Google Scholar 

  11. Kitagaki H, Ono N, Hayakawa K, Kitazawa T, Watanabe K, Shiohara T. Repeated elicitation of contact hypersensitivity induces a shift in cutaneous cytokine milieu from a T helper cell type 1 to a T helper cell type 2 profile. J Immunol. 1997;159:2484–91.

    PubMed  CAS  Google Scholar 

  12. Nakada T, Watanabe K, Matsumoto T, Santa K, Triizuka K, Hanawa T. Effect of orally administered Hochu-ekki-to, a Japanese herbal medicine, on contact hypersensitivity caused by repeated application of antigen. Int Immunopharmacol. 2002;2:901–11.

    Article  PubMed  CAS  Google Scholar 

  13. Webb EF, Tzimas MN, Newsholme SJ, Griswold DE. Intralesional cytokines in chronic oxazolone-induced contact sensitivity suggest roles for tumor necrosis factor alpha and interleukin-4. J Invest Dermatol. 1998;111:86–92.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang EY, Chen AY, Zhu BT. Mechanism of dinitrochlorobenzene-induced dermatitis in mice: role of specific antibodies in pathogenesis. PLoS One. 2009;5:4.

    Google Scholar 

  15. Bieber T. Atopic dermatitis. Ann Dermatol. 2010;22:125–37.

    Article  PubMed  CAS  Google Scholar 

  16. Piguet PF, Grau GE, Hauser C, et al. Tumor necrosis factor is a critical mediator in hapten-induced irritant and contact hypersensitivity reactions. J Exp Med. 1991;173:673–9.

    Article  PubMed  CAS  Google Scholar 

  17. McHale JF, Harari OA, Marshall D, Haskard DO. Vascular endothelial cell expression of ICAM-1 and VCAM-1 at the onset of eliciting contact hypersensitivity in mice: evidence for a dominant role of TNF-alpha. J Immunol. 1999;162:1648–55.

    PubMed  CAS  Google Scholar 

  18. Hamid G, Boguniewicz M, Leung DY. Differential in situ cytokine gene expression in acute vs. chronic atopic dermatitis. J Clin Invest. 1994;94:870–6.

    Article  PubMed  CAS  Google Scholar 

  19. Grewe M, Walther S, Gyufko K, et al. Analysis of the cytokine pattern expressed in situ in inhalant allergen patch test reactions of atopic dermatitis patients. J Invest Dermatol. 1995;105:407–10.

    Article  PubMed  CAS  Google Scholar 

  20. Dieli F, Sireci G, Scire E, Salerno A, Bellavia A. Impaired contact hypersensitivity to trinitrochlorobenzene in interleukin-4-deficient mice. Immunology. 1999;98:71–9.

    Article  PubMed  CAS  Google Scholar 

  21. Seneviratne SL, Jones L, Bailey AS, Black AP, Ogg GS. Severe atopic dermatitis is associated with a reduced frequency of IL-10 producing allergen-specific CD4+ T cells. Clin Exp Dermatol. 2006;31:689–94.

    Article  PubMed  CAS  Google Scholar 

  22. Schwarz A, Grabbe S, Riemann H, Aragane Y, Simon M, Manon S, Andrade S, Luger TA, Zlotnik A, Schwarz T. In vivo effects of interleukin-10 on contact hypersensitivity and delayed-type hypersensitivity reactions. J Invest Dermatol. 1994;103:211–6.

    Article  PubMed  CAS  Google Scholar 

  23. Ferguson TA, Dube P, Griffith TS. Regulation of contact hypersensitivity by interleukin 10. J Exp Med. 1994;179:1597–604.

    Article  PubMed  CAS  Google Scholar 

  24. Wagner RD, Maroushek NM, Brown JF, Czuprynski CJ. Treatment with anti-interleukin-10 monoclonal antibody enhances early resistance to but impairs complete clearance of Listeria monocytogenes infection in mice. Infect Immun. 1994;62:2345–53.

    PubMed  CAS  Google Scholar 

  25. van der Heijden FL, Wierenga EA, Bos JD, et al. High frequency of IL-4-producing CD4+ cell allergen-specific T lymphocytes in atopic dermatitis. J Invest Dermatol. 1991;97:389–94.

    Article  PubMed  Google Scholar 

  26. Grewe M, Gyufko K, Schöpf E, Krutmann J. Lesional expression of interferon-gamma in atopic eczema. Lancet. 1994;343:25–6.

    Article  PubMed  CAS  Google Scholar 

  27. Werfel T, Morita A, Grewe M, Renz H, Wahn U, Krutmann J, Kapp A. Allergen specificity of skin-infiltrating T cells is not restricted to a type-2 cytokine pattern in chronic skin lesions of atopic dermatitis. J Invest Dermatol. 1996;107:871–6.

    Article  PubMed  CAS  Google Scholar 

  28. Thepen T, Langeveld-Wildschut EG, Bihari IC, van Wichen DF, van Reijsen FC, Mudde GC, Bruijnzeel-Koomen CA. Biphasic response against aeroallergen in atopic dermatitis showing a switch from an initial TH2 response to a TH1 response in situ: an immunocytochemical study. J Allergy Clin Immunol. 1996;97:828–37.

    Article  PubMed  CAS  Google Scholar 

  29. Leung DY, Gao PS, Grigoryev DN. etal. Human atopic dermatitis complicated by eczema herpeticum is associated with abnormalities in IFN-γ response. J Allergy Clin Immunol. 2011;127(4):965–73.

    Article  PubMed  CAS  Google Scholar 

  30. Jung K, Linse F, Heller R, et al. Adhesion molecules in atopic dermatitis. VCAM-1 and ICAM-1 expression is increased in healthy appearing skin. Allergy. 1996;51:452–60.

    PubMed  CAS  Google Scholar 

  31. Shimada Y, Hasegawa M, Kaburagi Y, Hamaguchi Y, Komura K, Saito E, Takehara K, Steeber DA, Tedder TF, Sato S. L-selectin or ICAM-1 deficiency reduces an immediate-type hypersensitivity response by preventing mast cell recruitment in repeated elicitation of contact hypersensitivity. J Immunol. 2003;170:4325–34.

    PubMed  CAS  Google Scholar 

  32. Kaburagi Y, Shimada Y, Nagaoka T, Hasegawa M, Takehara K, Sato S. Enhanced production of CC-chemokines (RANTES, MCP-1, MIP-1alpha, MIP-1beta, and eotaxin) in patients with atopic dermatitis. Arch Dermatol Res. 2001;293:350–5.

    Article  PubMed  CAS  Google Scholar 

  33. Vestergaard C, Yoneyama H, Murai M, Nakamura K, Tamaki K, Terashima Y, Imai T, Yoshie O, Irimura T, Mizutani H, Matsushima K. Overproduction of Th2-specific chemokines in NC/Nga mice exhibiting atopic dermatitis-like lesions. J Clin Invest. 1999;104:1097–105.

    Article  PubMed  CAS  Google Scholar 

  34. Saint-Mezard P, Berard F, Dubois B, et al. The role of CD4+ and CD8+ T cells in contact hypersensitivity and allergic contact dermatitis. Eur J Dermatol. 2004;14:131–8.

    PubMed  Google Scholar 

  35. Spergei JM, Mizoguchi E, Oettgen H, et al. Roles of Th1 and Th2 cytokines in a murine model of allergic dermatitis. J Clin Invest. 1999;103:1103–11.

    Article  Google Scholar 

  36. Kiehl P, Falkenberg K, Vogelbruch M, et al. Tissue eosinophilia in acute and chronic dermatitis: a morphometric approach using quantitative image analysis of immunostaining. Br J Dermatol. 2001;145:720–9.

    Article  PubMed  CAS  Google Scholar 

  37. Soter NA. Morphology of atopic eczema. Allergy. 1989;44:16–9.

    PubMed  Google Scholar 

  38. Irani AM, Sampson HA, Schwartz LB. Mast cells in atopic dermatitis. Allergy Suppl. 1989;9:31–4.

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science foundation of China (No. 81260462), Guangxi Education Department (Nos. 201012MS174 and 201203YB120), and Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China (No. 2011-508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingqin Liu.

Additional information

Responsible Editor: Michael Parnham.

Guangchen Sun and Wangyaqin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, G., Wang, Y., Yin, B. et al. Tumor necrosis factor-α, monocyte chemoattractant protein-1 and intercellular adhesion molecule-1 increase during the development of a 2,4-dinitrofluorobenzene-induced immediate-type dermatitis in rats. Inflamm. Res. 62, 589–597 (2013). https://doi.org/10.1007/s00011-013-0611-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0611-6

Keywords

Navigation