Skip to main content
Log in

Inflammatory markers and bariatric surgery: a meta-analysis

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Obesity is a state of chronic low grade inflammation with increased levels of inflammatory markers such as C-reactive protein (CRP), interleukin (IL)-6 and tumor necrosis factor (TNF) α. The changes of some of the above markers after bariatric surgery are not consistent across studies. The objective of this study is to confirm the changes in blood levels of CRP, IL-6 and TNFα after bariatric surgery.

Methods

A Pubmed and EMBASE search was performed for studies measuring the above cytokines in blood before and after bariatric surgery. A meta-analysis was performed for the changes in CRP, TNFα and IL-6 for the maximum follow-up time in each study as well as for discrete follow-up times.

Results

Only observational studies could be retrieved. Bariatric surgery produces about 66 and 27 % reduction in CRP and IL-6 levels, respectively. The change in TNFα after bariatric surgery did not approach statistical significance.

Conclusion

Bariatric surgery decreases the low grade inflammation associated with obesity as measured by CRP and IL-6 levels. The change of TNFα after bariatric surgery should be further investigated with randomized trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis of observational studies in epidemiology (MOOSE) group. JAMA. 2000;283:2008–12.

    Article  PubMed  CAS  Google Scholar 

  2. Pardina E, Ferrer R, Baena-Fustegueras JA, Rivero J, Lecube A, Fort JM, Vargas V, Catalan R, Peinado-Onsurbe J. Only C-reactive protein, but not TNF-alpha or IL6, reflects the improvement in inflammation after bariatric surgery. Obes Surg. 2012;22:131–9.

    Article  PubMed  Google Scholar 

  3. Huang H, Kasumov T, Gatmaitan P, Heneghan HM, Kashyap SR, Schauer PR, Brethauer SA, Kirwan JP. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity (Silver Spring). 2011;19:2235–40.

    Article  CAS  Google Scholar 

  4. Komorowski J, Jankiewicz-Wika J, Kolomecki K, Cywinski J, Piestrzeniewicz K, Swietoslawski J, Stepien H. Systemic blood osteopontin, endostatin, and E-selectin concentrations after vertical banding surgery in severely obese adults. Cytokine. 2011;55:56–61.

    Article  PubMed  CAS  Google Scholar 

  5. Miller GD, Nicklas BJ, Fernandez A. Serial changes in inflammatory biomarkers after Roux-en-Y gastric bypass surgery. Surg Obes Relat Dis. 2011;7:618–24.

    Article  PubMed  Google Scholar 

  6. Pallayova M, Steele KE, Magnuson TH, Schweitzer MA, Smith PL, Patil SP, Bevans-Fonti S, Polotsky VY, Schwartz AR. Sleep apnea determines soluble TNF-alpha receptor 2 response to massive weight loss. Obes Surg. 2011;21:1413–23.

    Article  PubMed  Google Scholar 

  7. de Luis DA, Pacheco D, Aller R. Influence of G308A polymorphism of tumor necrosis factor alpha gene on surgical results of biliopancreatic diversion. Obes Surg. 2010;20:221–5.

    Article  PubMed  Google Scholar 

  8. Tussing-Humphreys L, Pini M, Ponemone V, Braunschweig C, Fantuzzi G. Suppressed cytokine production in whole blood cultures may be related to iron status and hepcidin and is partially corrected following weight reduction in morbidly obese pre-menopausal women. Cytokine. 2011;53:201–6.

    Article  PubMed  CAS  Google Scholar 

  9. Kopp HP, Krzyzanowska K, Schernthaner GH, Kriwanek S, Schernthaner G. Relationship of androgens to insulin resistance and chronic inflammation in morbidly obese premenopausal women: studies before and after vertical banded gastroplasty. Obes Surg. 2006;16:1214–20.

    Article  PubMed  Google Scholar 

  10. Bueter M, Dubb SS, Gill A, Joannou L, Ahmed A, Frankel AH, Tam FW, le Roux CW. Renal cytokines improve early after bariatric surgery. Br J Surg. 2010;97:1838–44.

    Article  PubMed  CAS  Google Scholar 

  11. Vazquez LA, Pazos F, Berrazueta JR, Fernandez-Escalante C, Garcia-Unzueta MT, Freijanes J, Amado JA. Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery. J Clin Endocrinol Metab. 2005;90:316–22.

    Article  PubMed  CAS  Google Scholar 

  12. Tussing-Humphreys LM, Nemeth E, Fantuzzi G, Freels S, Holterman AX, Galvani C, Ayloo S, Vitello J, Braunschweig C. Decreased serum hepcidin and improved functional iron status 6 months after restrictive bariatric surgery. Obesity (Silver Spring). 2010;18:2010–6.

    Article  CAS  Google Scholar 

  13. Maruna P, Gurlich R, Fried M, Frasko R, Chachkhiani I, Haluzik M. Leptin as an acute phase reactant after non-adjustable laparoscopic gastric banding. Obes Surg. 2001;11:609–14.

    Article  PubMed  CAS  Google Scholar 

  14. Tschoner A, Sturm W, Ress C, Engl J, Kaser S, Laimer M, Laimer E, Klaus A, Tilg H, Patsch JR, Ebenbichler CF. Effect of weight loss on serum pigment epithelium-derived factor levels. Eur J Clin Invest. 2011;41:937–42.

    Article  PubMed  CAS  Google Scholar 

  15. Sainsbury A, Goodlad RA, Perry SL, Pollard SG, Robins GG, Hull MA. Increased colorectal epithelial cell proliferation and crypt fission associated with obesity and roux-en-Y gastric bypass. Cancer Epidemiol Biomarkers Prev. 2008;17:1401–10.

    Article  PubMed  CAS  Google Scholar 

  16. van de Sande-Lee S, Pereira FR, Cintra DE, Fernandes PT, Cardoso AR, Garlipp CR, Chaim EA, Pareja JC, Geloneze B, Li LM, Cendes F, Velloso LA. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. Diabetes. 2011;60:1699–704.

    Article  PubMed  CAS  Google Scholar 

  17. Ress C, Tschoner A, Engl J, Klaus A, Tilg H, Ebenbichler CF, Patsch JR, Kaser S. Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest. 2010;40:277–80.

    Article  PubMed  CAS  Google Scholar 

  18. Perez-Romero N, Serra A, Granada ML, Rull M, Alastrue A, Navarro-Diaz M, Romero R, Fernandez-Llamazares J. Effects of two variants of Roux-en-Y Gastric bypass on metabolism behaviour: focus on plasma ghrelin concentrations over a 2-year follow-up. Obes Surg. 2010;20:600–9.

    Article  PubMed  Google Scholar 

  19. Hakeam HA, O’Regan PJ, Salem AM, Bamehriz FY, Eldali AM. Impact of laparoscopic sleeve gastrectomy on iron indices: 1 year follow-up. Obes Surg. 2009a;19:1491–6.

    Article  PubMed  Google Scholar 

  20. Agrawal V, Krause KR, Chengelis DL, Zalesin KC, Rocher LL, McCullough PA. Relation between degree of weight loss after bariatric surgery and reduction in albuminuria and C-reactive protein. Surg Obes Relat Dis. 2009;5:20–6.

    Article  PubMed  Google Scholar 

  21. Hakeam HA, O’Regan PJ, Salem AM, Bamehriz FY, Jomaa LF. Inhibition of C-reactive protein in morbidly obese patients after laparoscopic sleeve gastrectomy. Obes Surg. 2009b;19:456–60.

    Article  PubMed  Google Scholar 

  22. Manco M, Fernandez-Real JM, Equitani F, Vendrell J. Effect of massive weight loss on inflammatory adipocytokines and the innate immune system in morbidly obese women. J Clin Endocrinol Metab. 2007;92:483–90.

    Article  PubMed  CAS  Google Scholar 

  23. Chen SB, Lee YC, Ser KH, Chen JC, Chen SC, Hsieh HF, Lee WJ. Serum C-reactive protein and white blood cell count in morbidly obese surgical patients. Obes Surg. 2009;19:461–6.

    Article  PubMed  Google Scholar 

  24. Gannage-Yared MH, Yaghi C, Habre B, Khalife S, Noun R, Germanos-Haddad M, Trak-Smayra V. Osteoprotegerin in relation to body weight, lipid parameters insulin sensitivity, adipocytokines, and C-reactive protein in obese and non-obese young individuals: results from both cross-sectional and interventional study. Eur J Endocrinol. 2008;158:353–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lin E, Phillips LS, Ziegler TR, Schmotzer B, Wu K, Gu LH, Khaitan L, Lynch SA, Torres WE, Smith CD, Gletsu-Miller N. Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes. 2007a;56:735–42.

    Article  PubMed  CAS  Google Scholar 

  26. Lin LY, Lee WJ, Shen HN, Yang WS, Pai NH, Su TC, Liau CS. Nitric oxide production is paradoxically decreased after weight reduction surgery in morbid obesity patients. Atherosclerosis. 2007b;190:436–42.

    Article  PubMed  CAS  Google Scholar 

  27. Geloneze SR, Geloneze B, Morari J, Matos-Souza JR, Lima MM, Chaim EA, Pareja JC, Velloso LA. PGC1alpha gene Gly482Ser polymorphism predicts improved metabolic, inflammatory and vascular outcomes following bariatric surgery. Int J Obes (Lond). 2012;36:363–8.

    Article  CAS  Google Scholar 

  28. De Ciuceis C, Porteri E, La Boria E, Boari G, Mittempergher F, Di Betta E, Casella C. Subcutaneous small resistance artery morphology and circulating indices of inflammation/oxidative stress in obese patients before and after bariatric surgery and consistent weight loss. High Blood Press Cardiovasc Prev. 2011;18:158.

    Google Scholar 

  29. Melendez Araujo M, De Matos Arruda S, Silva Oliveira M, Franca F, Barros R, Medeiros Santos R, Cubas Rolim E, Daher Milhomem P, Ferreira Neves C. Evaluation of inflamatory and metabolic state of patients with steatosis before Roux-en-Y gastric bypass procedure and after six months of operation. Obes Surg. 2011;21:1129.

    Google Scholar 

  30. Di Renzo L, Carbonelli MG, Bianchi A, Iacopino L, Fiorito R, Di Daniele N, De Lorenzo A. Body composition changes after laparoscopic adjustable gastric banding: what is the role of -174G>C interleukin-6 promoter gene polymorphism in the therapeutic strategy? Int J Obes (Lond). 2012;36:369–78.

    Article  CAS  Google Scholar 

  31. Wolf T, Rauschmayer M, Dressler M, Ring A, Britz A, Lohmann T. Changes of hormone levels in the early period after bariatric surgery. Obes Surg. 2011;21:1079.

    Google Scholar 

  32. Fica S, Sirbu A, Copaescu C, Olaru R, Florea S. Significant improvement in metabolic status 6 months after bariatric surgery. Diabetes Technol Ther. 2011;13:223–4.

    Google Scholar 

  33. Wong A, Chan D, Armstrong J, Watts G. Effect of laparoscopic sleeve gastrectomy on elevated C-reactive protein and atherogenic dyslipidemia in morbidly obese patients. Clin Biochem. 2011;44:342–4.

    Article  PubMed  CAS  Google Scholar 

  34. Faria G, Preto J, Gouveia A, Barbosa J, Carneiro S, Costa E, Teixeira C, Gil C, Sousa-Rodrigues J, Alves J. Decrease in inflammatory state and insulin-resistance 6 to 12 months after laparoscopic Roux-en-Y gastric bypass (LRYGB). Obes Surg. 2010;20:1056.

    Article  Google Scholar 

  35. Komorowski J, Jankiewicz-Wika J, Kolomecki K, Cywinski J, Piestrzeniewicz K. Peripheral blood concentrations of adipocytokines, inflammation and metabolic syndrome markers after bariatric surgery. Obes Rev. 2010;11:251.

    Article  Google Scholar 

  36. Boesing F, Moreira E, Wilhelm-Filho D, Vigil S, Parizottto E, Inacio D, Portari G, Trindade E, Jordao-Junior A, Frode T. Roux-en-Y bypass gastroplasty: markers of oxidative stress 6 months after surgery. Obes Surg. 2010;20:1236–44.

    Article  PubMed  Google Scholar 

  37. Richette P, Poitou C, Garnero P, Vicaut E, Bouillot JL, Lacorte JM, Basdevant A, Clement K, Bardin T, Chevalier X. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann Rheum Dis. 2011;70:139–44.

    Article  PubMed  CAS  Google Scholar 

  38. Lima MM, Pareja JC, Alegre SM, Geloneze SR, Kahn SE, Astiarraga BD, Chaim EA, Geloneze B. Acute effect of roux-en-y gastric bypass on whole-body insulin sensitivity: a study with the euglycemic-hyperinsulinemic clamp. J Clin Endocrinol Metab. 2010;95:3871–5.

    Article  PubMed  CAS  Google Scholar 

  39. Woodard G, Peraza J, Bravo S, Toplosky L, Hernandez-Boussard T, Morton J. One year improvements in cardiovascular risk factors: A comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20:578–82.

    Article  PubMed  Google Scholar 

  40. Swarbrick MM, Stanhope KL, Austrheim-Smith IT, Van Loan MD, Ali MR, Wolfe BM, Havel PJ. Longitudinal changes in pancreatic and adipocyte hormones following Roux-en-Y gastric bypass surgery. Diabetologia. 2008;51:1901–11.

    Article  PubMed  CAS  Google Scholar 

  41. Malheiros C, Freitas W, Saleh M, Taha M, Bertolami M. Bariatric surgery decreases the inflammatory response in the 6 months post-operatory. Obes Surg. 2009;19:1013.

    Google Scholar 

  42. Carroll J, Franks S, Smith A, Phelps D. Visceral adipose tissue loss and insulin resistance 6 months after laparoscopic gastric banding surgery: A preliminary study. Obes Surg. 2009;19:47–55.

    Article  PubMed  Google Scholar 

  43. Chacon MR, Miranda M, Jensen CH, Fernandez-Real JM, Vilarrasa N, Gutierrez C, Naf S, Gomez JM, Vendrell J. Human serum levels of fetal antigen 1 (FA1/Dlk1) increase with obesity, are negatively associated with insulin sensitivity and modulate inflammation in vitro. Int J Obes (Lond). 2008;32:1122–9.

    Article  CAS  Google Scholar 

  44. Zagorski S, Papa N, Chung M. The effect of weight loss after gastric bypass on C-reactive protein levels. Surg Obes Relat Dis. 2005;1:81–5.

    Article  PubMed  Google Scholar 

  45. Broch M, Gomez JM, Auguet MT, Vilarrasa N, Pastor R, Elio I, Olona M, Garcia-Espana A, Richart C. Association of retinol-binding protein-4 (RBP4) with lipid parameters in obese women. Obes Surg. 2010;20:1258–64.

    Article  PubMed  Google Scholar 

  46. Schaller G, Aso Y, Schernthaner GH, Kopp HP, Inukai T, Kriwanek S, Schernthaner G. Increase of osteopontin plasma concentrations after bariatric surgery independent from inflammation and insulin resistance. Obes Surg. 2009;19:351–6.

    Article  PubMed  Google Scholar 

  47. Botella-Carretero JI, Alvarez-Blasco F, Martinez-Garcia MA, Luque-Ramirez M. The decrease in serum IL-18 levels after bariatric surgery in morbidly obese women is a time-dependent event. Obes Surg. 2007;17:1199–208.

    Article  PubMed  Google Scholar 

  48. Moschen AR, Molnar C, Enrich B, Geiger S, Ebenbichler CF, Tilg H. Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol Med. 2011;17:840–5.

    Article  PubMed  CAS  Google Scholar 

  49. Simon I, Escote X, Vilarrasa N, Gomez J, Fernandez-Real JM, Megia A, Gutierrez C, Gallart L, Masdevall C, Vendrell J. Adipocyte fatty acid-binding protein as a determinant of insulin sensitivity in morbid-obese women. Obesity (Silver Spring). 2009;17:1124–8.

    CAS  Google Scholar 

  50. Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediat Inflamm. 2010;2010:513948.

    Article  CAS  Google Scholar 

  51. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82(12):4196–200.

    Article  PubMed  CAS  Google Scholar 

  52. Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83:847–50.

    Article  PubMed  CAS  Google Scholar 

  53. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Investig. 2006;116:3015–25.

    Article  PubMed  CAS  Google Scholar 

  54. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Investig. 2003;112:1796–808.

    PubMed  CAS  Google Scholar 

  55. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Investig. 2003;112:1821–30.

    PubMed  CAS  Google Scholar 

  56. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55:1554–61.

    Article  PubMed  CAS  Google Scholar 

  57. Nieto-Vazquez I, Fernández-Veledo S, Krämer DK, Vila-Bedmar R, Garcia-Guerra L, Lorenzo M. Insulin resistance associated to obesity: the link TNF-alpha. Arch Physiol Biochem. 2008;114:183–94.

    Article  PubMed  CAS  Google Scholar 

  58. Hotamisligil GS. Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes. 1999;107:119–25.

    Article  PubMed  CAS  Google Scholar 

  59. Arner P. The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab. 2003;14:137–45.

    Article  PubMed  CAS  Google Scholar 

  60. Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR, Pedersen BK. Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes. 2005;54:2939–45.

    Article  PubMed  CAS  Google Scholar 

  61. Gonzalez-Gay MA, De Matias JM, Gonzalez-Juanatey C, Garcia-Porrua C, Sanchez-Andrade A, Martin J, Llorca J. Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin Exp Rheumatol. 2006;24:83–6.

    PubMed  CAS  Google Scholar 

  62. Ofei F, Hurel S, Newkirk J, Sopwith M, Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes. 1996;45:881–5.

    Article  PubMed  Google Scholar 

  63. Seriolo BC, Ferrone, Cutolo M. Longterm anti-tumor necrosis factor-alpha treatment in patients with refractory rheumatoid arthritis: relationship between insulin resistance and disease activity. J Rheumatol. 2008;35(2):355–7.

    PubMed  CAS  Google Scholar 

  64. Tam LS, Tomlinson B, Chu TT, Li TK, Li EK. Impact of TNF inhibition on insulin resistance and lipids levels in patients with rheumatoid arthritis. Clin Rheumatol. 2007;26:1495–8.

    Article  PubMed  Google Scholar 

  65. Ferraz-Amaro I, Arce-Franco M, Muñiz J, López-Fernández J, Hernández-Hernández V, Franco A, Quevedo J, Martínez-Martín J, Díaz-González F. Systemic blockade of TNF-alpha does not improve insulin resistance in humans. Horm Metab Res. 2011;43:801–8.

    Article  PubMed  CAS  Google Scholar 

  66. Schreyer SA, Chua SC Jr, LeBoeuf RC. Obesity and diabetes in TNF-alpha receptor-deficient mice. J Clin Investig. 1998;102:402–11.

    Article  PubMed  CAS  Google Scholar 

  67. Uysal KT, Wiesbrock SM, Hotamisligil GS. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity. Endocrinology. 1998;139:4832–8.

    Article  PubMed  CAS  Google Scholar 

  68. Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78.

    Article  PubMed  CAS  Google Scholar 

  69. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82:4196–200.

    Article  PubMed  CAS  Google Scholar 

  70. Kim JH, Bachmann RA, Chen J. Interleukin-6 and insulin resistance. Vitam Horm. 2009;80:613–33.

    Article  PubMed  CAS  Google Scholar 

  71. Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S, Coppack SW. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med. 2002;8:75–9.

    Article  CAS  Google Scholar 

  72. Di Gregorio GB, Hensley L, Lu T, Ranganathan G, Kern PA. Lipid and carbohydrate metabolism in mice with a targeted mutation in the IL-6 gene: absence of development of age-related obesity. Am J Physiol Endocrinol Metab. 2004;287:E182–7.

    Article  PubMed  Google Scholar 

  73. Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A, Matsumoto M, Teshigawara K, Matsuki Y, Watanabe E, Hiramatsu R, Notohara K, Katayose K, Okamura H, Kahn CR, Noda T, Takeda K, Akira S, Inui A, Kasuga M. Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metab. 2006;3:267–75.

    Article  PubMed  CAS  Google Scholar 

  74. Klover PJ, Clementi AH, Mooney RA. Interleukin-6 depletion selectively improves hepatic insulin action in obesity. Endocrinology. 2005;146:3417–27.

    Article  PubMed  CAS  Google Scholar 

  75. Klover PJ, Zimmers TA, Koniaris LG, Mooney RA. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes. 2003;52:2784–9.

    Article  PubMed  CAS  Google Scholar 

  76. Carey AL, Febbraio MA. Interleukin-6 and insulin sensitivity: friend or foe? Diabetologia. 2004;47:1135–42.

    PubMed  CAS  Google Scholar 

  77. Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55:2688–97.

    Article  PubMed  CAS  Google Scholar 

  78. Lagathu C, Bastard JP, Auclair M, Maachi M, Capeau J, Caron M. Chronic interleukin-6 (IL-6) treatment increased IL-6 secretion and induced insulin resistance in adipocyte: prevention by rosiglitazone. Biochem Biophys Res Commun. 2003;311:372–9.

    Article  PubMed  CAS  Google Scholar 

  79. Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278:45777–84.

    Article  PubMed  CAS  Google Scholar 

  80. Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Klein J, Paschke R. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2003;301:1045–50.

    Article  PubMed  CAS  Google Scholar 

  81. Devaraj S, Singh U, Jialal I. Human C-reactive protein and the metabolic syndrome. Curr Opin Lipidol. 2009;20:182–9.

    Article  PubMed  CAS  Google Scholar 

  82. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.

    Article  PubMed  CAS  Google Scholar 

  83. Frolich M, Imhof A, Berg G, Hutchinson W, Pepys M, Boeing H, et al. Association between C-reactive protein and features of the metabolic syndrome: a population based study. Diabetes Care. 2000;23:1835–9.

    Article  Google Scholar 

  84. Majello B, Arcone R, Toniatti C, Ciliberto G. Constitutive and IL-6-induced nuclear factors that interact with the human C-reactive protein promoter. EMBO J. 1990;9:457–65.

    PubMed  CAS  Google Scholar 

  85. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB. Elevated C-reactive protein levels in overweight and obese adults. JAMA. 1999;282:2131–5.

    Article  PubMed  CAS  Google Scholar 

  86. Faber DR, van der Graaf Y, Westerink J, Visseren FL. Increased visceral adipose tissue mass is associated with increased C-reactive protein in patients with manifest vascular diseases. Atherosclerosis. 2010;212:274–80.

    Article  PubMed  CAS  Google Scholar 

  87. Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome. Diabetologia. 1997;40:1286–92.

    Article  PubMed  CAS  Google Scholar 

  88. Faber DR, van der Graaf Y, Westerink J, Visseren FL. A randomized study comparing the effects of a low-carbohydrate diet and a conventional diet on lipoprotein subfractions and C-reactive protein levels in patients with severe obesity. Am J Med. 2004;117:398–405.

    Article  CAS  Google Scholar 

  89. Howard BV, Best L, Comuzzie A, Ebbesson SO, Epstein SE, Fabsitz RR, Howard WJ, Silverman A, Wang H, Zhu J, Umans J. C-reactive protein, insulin resistance, and metabolic syndrome in a population with a high burden of subclinical infection: insights from the genetics of coronary artery disease in Alaska natives (GOCADAN) study. Diabetes Care. 2008;31:2312–4.

    Article  PubMed  CAS  Google Scholar 

  90. Tsuriya D, Morita H, Morioka T, Takahashi N, Ito T, Oki Y, Nakamura H. Significant correlation between visceral adiposity and high-sensitivity C-reactive protein (hs-CRP) in Japanese subjects. Intern Med. 2011;50:2767–73.

    Article  PubMed  Google Scholar 

  91. Xi L, Xiao C, Bandsma RH, Naples M, Adeli K, Lewis GF. C-reactive protein impairs hepatic insulin sensitivity and insulin signaling in rats: role of mitogen-activated protein kinases. Hepatology. 2011;53:127–35.

    Article  PubMed  CAS  Google Scholar 

  92. Chieko Mineo, Longoria C, Vongpatanasin W, Shaul PW Abstract 5550: C-reactive protein (CRP) causes insulin resistance in mice through FcRIIB-mediated inhibition of insulin signaling circulation. 2009; 120: S1114.

  93. Muller S, Martin S, Koenig W, Hanifi-Moghaddam P, Rathmann W, Haastert B, et al. Impaired glucose tolerance is associated with increased serum concentrations of interleukin 6 and co-regulated acute-phase proteins but not TNF-alpha or its receptors. Diabetologia. 2002;45:805–12.

    Article  PubMed  CAS  Google Scholar 

  94. Holdstock C, Lind L, Engstrom BE, Ohrvall M, Sundbom M, Larsson A, et al. CRP reduction following gastric bypass surgery is most pronounced in insulin-sensitive subjects. Int J Obes (Lond). 2005;29:1275–80.

    Article  CAS  Google Scholar 

  95. Morin-Papunen L, Rautio K, Ruokonen A, Hedberg P, Puukka M, Tapanainen JS. Metformin reduces serum C-reactive protein levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:4649–54.

    Article  PubMed  CAS  Google Scholar 

  96. Sidhu JS, Cowan D, Kaski JC. The effects of rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, on markers of endothelial cell activation, C-reactive protein, and fibrinogen levels in non-diabetic coronary artery disease patients. J Am Coll Cardiol. 2003;42:1757–63.

    Article  PubMed  CAS  Google Scholar 

  97. van Dielen FM, van’t Veer C, Schols AM, Soeters PB, Buurman WA, Greve JW. Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. Int J Obes Relat Metab Disord. 2001;25:1759–66.

    Article  PubMed  CAS  Google Scholar 

  98. Chen K, Li F, Li J, Cai H, Strom S, Bisello A, Kelley DE, Friedman-Einat M, Skibinski GA, McCrory MA, Szalai AJ, Zhao AZ. Induction of leptin resistance through direct interaction of C-reactive protein with leptin. Nat Med. 2006;12:425–32.

    Article  PubMed  CAS  Google Scholar 

  99. Finck BN, Johnson RW. Tumor necrosis factor (TNF)-alpha induces leptin production through the p55 TNF receptor. Am J Physiol Regul Integr Comp Physiol. 2000;278:R537–43.

    PubMed  CAS  Google Scholar 

  100. Zhao T, Hou M, Xia M, Wang Q, Zhu H, Xiao Y, Tang Z, Ma J, Ling W. Globular adiponectin decreases leptin-induced tumor necrosis factor-alpha expression by murine macrophages: involvement of cAMP-PKA and MAPK pathways. Cell Immunol. 2005;238:19–30.

    Article  PubMed  CAS  Google Scholar 

  101. Tang CH, Lu DY, Yang RS, Tsai HY, Kao MC, Fu WM, Chen YF. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia. J Immunol. 2007;179:1292–302.

    PubMed  CAS  Google Scholar 

  102. Park PH, McMullen MR, Huang H, Thakur V, Nagy LE. Short-term treatment of RAW264.7 macrophages with adiponectin increases tumor necrosis factor-alpha (TNF-alpha) expression via ERK1/2 activation and Egr-1 expression: role of TNF-alpha in adiponectin-stimulated interleukin-10 production. J Biol Chem. 2007;282:21695–703.

    Article  PubMed  CAS  Google Scholar 

  103. Ouchi N, Kihara S, Funahashi T, Nakamura T, Nishida M, Kumada M, Okamoto Y, Ohashi K, Nagaretani H, Kishida K, Nishizawa H, Maeda N, Kobayashi H, Hiraoka H, Matsuzawa Y. Reciprocal association of C-reactive protein with adiponectin in blood stream and adipose tissue. Circulation. 2003;107:671–4.

    Article  PubMed  CAS  Google Scholar 

  104. Olszanecka-Glinianowicz M, Kocełak P, Janowska J, Skorupa A, Nylec M, Zahorska-Markiewicz B. Plasma visfatin and tumor necrosis factor-alpha (TNF-alpha) levels in metabolic syndrome. Kardiol Pol. 2011;69:802–7.

    PubMed  Google Scholar 

  105. Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, Matsuki Y, Murakami M, Ichisaka T, Murakami H, Watanabe E, Takagi T, Akiyoshi M, Ohtsubo T, Kihara S, Yamashita S, Makishima M, Funahashi T, Yamanaka S, Hiramatsu R, Matsuzawa Y, Shimomura I. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307:426–30.

    Article  PubMed  CAS  Google Scholar 

  106. Li H, Liu P, Cepeda J, Fang D, Easley RB, Simon BA, Zhang LQ, Ye SQ. Augmentation of pulmonary epithelial cell IL-8 expression and permeability by pre-B-cell colony enhancing factor. J Inflamm (Lond). 2008;5:15.

    Article  CAS  Google Scholar 

  107. Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, Tilg H. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 2007;178:1748–58.

    PubMed  CAS  Google Scholar 

  108. Kralisch S, Klein J, Lossner U, Bluher M, Paschke R, Stumvoll M, et al. Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab. 2005;289:E586–90.

    Article  PubMed  CAS  Google Scholar 

  109. Bastard JP, Jardel C, Bruckert E, Vidal H, Hainque B. Variations in plasma soluble tumour necrosis factor receptors after diet-induced weight loss in obesity. Diabetes Obes Metab. 2000;2:323–5.

    Article  PubMed  CAS  Google Scholar 

  110. Heilbronn LK, Noakes M, Clifton PM. Energy restriction and weight loss on very-low-fat diets reduce C-reactive protein concentrations in obese, healthy women. Arterioscler Thromb Vasc Biol. 2001;21:968–70.

    Article  PubMed  CAS  Google Scholar 

  111. Tchernof A, Nolan A, Sites CK, Ades PA, Poehlman ET. Weight loss reduces C-reactive protein levels in obese postmenopausal women. Circulation. 2002;105:564–9.

    Article  PubMed  Google Scholar 

  112. Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000;85:3338–42.

    Article  PubMed  CAS  Google Scholar 

  113. Tsukui S, Kanda T, Nara M, Nishino M, Kondo T, Kobayashi I. Moderate intensity regular exercise decreases serum tumor necrosis factor-a and HbA1c levels in healthy women. Int J Obes Relat Metab Disord. 2000;24:1207–11.

    Article  PubMed  CAS  Google Scholar 

  114. Straczkowski M, Kowalska I, Dzienis-Straczkowska S, Stepién A, Skibińska E, Szelachowska M, et al. Changes in tumor necrosis factor-a system and insulin sensitivity during an exercise training program in obese women with normal and impaired glucose tolerance. Eur J Endocrinol. 2001;145:273–80.

    Article  PubMed  CAS  Google Scholar 

  115. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2006;54:2277–86.

    Article  Google Scholar 

  116. Zhang H, Wang Y, Zhang J, Potter BJ, Sowers JR, Zhang C. Bariatric surgery reduces visceral adipose inflammation and improves endothelial function in type 2 diabetic mice. Arterioscler Thromb Vasc Biol. 2011;31:2063–9.

    Article  PubMed  CAS  Google Scholar 

  117. Greco AV, Mingrone G, Giancaterini A, Manco M, Morroni M, Cinti S, Granzotto M, Vettor R, Camastra S, Ferrannini E. Insulin resistance in morbid obesity: reversal with intramyocellular fat depletion. Diabetes. 2002;51:144–51.

    Article  PubMed  CAS  Google Scholar 

  118. Zittermann A, Schleithoff SS, Tenderich G, Berthold HK, Körfer R, Stehle P. Low vitamin D status: a contributing factor in the pathogenesis of congestive heart failure? J Am Coll Cardiol. 2003;41:105–12.

    Article  PubMed  CAS  Google Scholar 

  119. Bellia A, Garcovich C, D’Adamo M, Lombardo M, Tesauro M, Donadel G et al. Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Intern Emerg Med. 2011 Epub.

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Raghavendra Rao.

Additional information

Responsible Editor: Artur Bauhofer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, S.R. Inflammatory markers and bariatric surgery: a meta-analysis. Inflamm. Res. 61, 789–807 (2012). https://doi.org/10.1007/s00011-012-0473-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0473-3

Keywords

Navigation