Skip to main content

Advertisement

Log in

MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1β-stimulated human articular chondrocyte C28/I2 cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Osteoarthritis is a degenerative joint disease, in which matrix metalloproteinase (MMP)-13 plays an important role. This study aimed to investigate miRNA-140-mediated negative regulation of MMP-13 expression in interleukin-1β (IL-1β)-stimulated human cartilage cells.

Methods

The human cartilage cell line C28/I2 was cultured in the presence of IL-1β to mimic an osteoarthritic environment. Expression of miRNA-140 and MMP-13 was analyzed after 48 h by real-time RT-PCR and western blot analyses. MiRNA-140 mediated regulation of MMP-13 expression was analyzed by luciferase reporter assays and anti-miRNA-140 oligonucleotide transfection. Furthermore, miRNA-140 and MMP-13 expression was analyzed following DHMEQ treatment.

Results

Expression of miRNA-140 and MMP-13 was elevated in IL-1β-stimulated C28/I2 cells. Bioinformatic prediction showed that the 3′-UTR of MMP-13 mRNA contained a potential binding miRNA-140 site and luciferase mRNA fused with 3′-UTR of MMP-13 mRNA was shown to be repressed by miRNA-140 in reporter assays. Expression of MMP-13 was elevated in IL-1β-stimulated C28/I2 cells following anti-miRNA-140 oligonucleotide transfection. NF-κB activity was inhibited in DHMEQ treated IL-1β-stimulated C28/I2 cells and was associated with decreased miRNA-140 and MMP-13 expression.

Conclusion

Expression of miRNA-140 and MMP-13 was induced by IL-1β. Expression of miRNA-140 inhibited MMP-13 in C28/I2 cells. Expression of miRNA-140 and MMP-13 was shown to be NF-κB-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schlaak JF, Pfers I, Meyer Zum Buschenfelde KH, Marker-Hermann E. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol. 1996;14:155–62.

    PubMed  CAS  Google Scholar 

  2. Aigner T, McKenna L. Molecular pathology and pathobiology of osteoarthritic cartilage. Cell Mol Life Sci. 2002;59:5–18.

    Article  PubMed  CAS  Google Scholar 

  3. Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009;11:224.

    Article  PubMed  Google Scholar 

  4. Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T, et al. Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum. 2006;54:3533–44.

    Article  PubMed  CAS  Google Scholar 

  5. Aigner T, McKenna L, Zien A, Fan Z, Gebhard PM, Zimmer R. Gene expression profiling of serum- and interleukin-1 beta-stimulated primary human adult articular chondrocytes––a molecular analysis based on chondrocytes isolated from one donor. Cytokine. 2005;31:227–40.

    Article  PubMed  CAS  Google Scholar 

  6. Aigner T, Soeder S, Haag J. IL-1β and BMPs––interactive players of cartilage matrix degradation and degeneration. Eur Cell Mater. 2006;12:49–56.

    PubMed  CAS  Google Scholar 

  7. Sato T, Konomi K, Yamasaki S, Aratani S, Tsuchimochi K, Yokouchi M, et al. Comparative analysis of gene expression profiles in intact and damaged regions of human osteoarthritic cartilage. Arthritis Rheum. 2006;54:808–17.

    Article  PubMed  CAS  Google Scholar 

  8. Yamane S, Ishida S, Hanamoto Y, Kumagai K, Masuda R, Tanaka K, et al. Proinflammatory role of amphiregulin, an epidermal growth factor family member whose expression is augmented in rheumatoid arthritis patients. J Inflamm (Lond). 2008;5:5.

    Article  Google Scholar 

  9. Chambers MG, Cox L, Chong L, Suri N, Cover P, Bayliss MT, et al. Matrix metalloproteinases and aggrecanases cleave aggrecan in different zones of normal cartilage but colocalize in the development of osteoarthritic lesions in STR/ort mice. Arthritis Rheum. 2001;44:1455–65.

    Article  PubMed  CAS  Google Scholar 

  10. Taganov KD, Boldin MP, Baltimore D. MicroRNAs and immunity: tiny players in a big field. Immunity. 2007;26:133–7.

    Article  PubMed  CAS  Google Scholar 

  11. Sonkoly E, Stahle M, Pivarcsi A. MicroRNAs and immunity: novel players in the regulation of normal immune function and inflammation. Semin Cancer Biol. 2008;18:131–40.

    Article  PubMed  CAS  Google Scholar 

  12. Kobayashi T, Lu J, Cobb BS, Rodda SJ, McMahon AP, Schipani E, et al. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation. Proc Natl Acad Sci USA. 2008;105:1949–54.

    Article  PubMed  CAS  Google Scholar 

  13. Araldi E, Schipani E. MiRNA-140 and the silencing of osteoarthritis. Genes Dev. 2010;24(11):1075–80.

    Article  PubMed  CAS  Google Scholar 

  14. Tardif G, Hum D, Pelletier JP, Duval N, Martel-Pelletier J. Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 2009;10:148.

    Article  PubMed  Google Scholar 

  15. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, et al. MiRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24:1173–85.

    Article  PubMed  CAS  Google Scholar 

  16. Tuddenham L, Wheeler G, Ntounia-Fousara S, Waters J, Hajihosseini MK, Clark I, et al. The cartilage specific miRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 2006;580:4214–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kao JJ. The NF-kappaB inhibitor pyrrolidine dithiocarbamate blocks IL-1beta induced hyaluronan synthase 1 (HAS1) mRNA transcription, pointing at NF-kappaB dependence of the gene HAS1. Exp Gerontol. 2006;41(6):641–7.

    Article  PubMed  CAS  Google Scholar 

  18. Matsumoto N, Ariga A, To-e S, Nakamura H, Agata N, Hirano S, et al. Synthesis of NF-kappaB activation inhibitors derived from epoxyquinomicin C. Bioorg Med Chem Lett. 2000;10(9):865–9.

    Article  PubMed  CAS  Google Scholar 

  19. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9.

    Article  PubMed  Google Scholar 

  20. Alcaraz MJ, Megías J, García-Arnandis I, Clérigues V, Guillén MI. New molecular targets for the treatment of osteoarthritis. Biochem Pharmacol. 2010;80(1):13–21.

    Article  PubMed  CAS  Google Scholar 

  21. Hashimoto M, Nakasa T, Hikata T, Asahara H. Molecular network of cartilage homeostasis and osteoarthritis. Med Res Rev. 2008;28:464–81.

    Article  PubMed  CAS  Google Scholar 

  22. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008;58:1284–92.

    Article  PubMed  CAS  Google Scholar 

  23. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene. 2008;27:5643–7.

    Article  PubMed  CAS  Google Scholar 

  24. Li X, Gibson G, Kim JS, Kroin J, Xu S, van Wijnen AJ, et al. MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene. 2011;480:34–41.

    Article  PubMed  CAS  Google Scholar 

  25. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103:12481–6.

    Article  PubMed  CAS  Google Scholar 

  26. Perry MM, Moschos SA, Williams AE, Shepherd NJ, Larner-Svensson HM, Lindsay MA. Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol. 2008;180(8):5689–98.

    PubMed  CAS  Google Scholar 

  27. Jones SW, Watkins G, Le Good N, Roberts S, Murphy CL, Brockbank SM, et al. The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthr Cartil. 2009;17:464–72.

    Article  PubMed  CAS  Google Scholar 

  28. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE. 2008;3:e3740.

    Article  PubMed  Google Scholar 

  29. Jones JI, Gockerman A, Busby WH Jr, Camacho-Hubner C, Clemmons DR. Extracellular matrix contains insulin-like growth factor binding protein-5: potentiation of the effects of IGF-I. J Cell Biol. 1993;121:679–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of Guangdong Provence, China (7004817), and the Science and Technology Planning Project of Guangdong Province, China (2007B031400004).

Conflict of interest

The authors state no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhuang.

Additional information

Responsible editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Zj., Zhuang, H., Wang, Gx. et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1β-stimulated human articular chondrocyte C28/I2 cells. Inflamm. Res. 61, 503–509 (2012). https://doi.org/10.1007/s00011-012-0438-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-012-0438-6

Keywords

Navigation