Skip to main content
Log in

Methyl-1-hydroxy-2-naphthoate, a novel naphthol derivative, inhibits lipopolysaccharide-induced inflammatory response in macrophages via suppression of NF-κB, JNK and p38 MAPK pathways

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The anti-inflammatory effect of methyl-1-hydroxy-2-naphthoate (MHNA), a novel naphthol derivative, was evaluated in the lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages.

Materials and methods

The release of nitric oxide (NO), interleukin-1beta (IL-1β) and interleukin-6 (IL-6) were detected by the Griess reagent and ELISA methods. The protein expressions of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were examined by Western blotting. The mRNA expressions of IL-1β, IL-6, iNOS and COX-2 were determined by real-time PCR. Activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) pathways were detected by Western blotting, reporter gene assay and electrophoretic mobility shift assay.

Results

MHNA significantly inhibited the release of NO, IL-1β and IL-6 as well as the protein expression of iNOS and COX-2 in LPS-stimulated macrophages. It also inhibited the mRNA expression of iNOS, COX-2, IL-1β and IL-6. Further studies indicated that MHNA inhibited LPS-induced increases in NF-κB DNA-binding activity and NF-κB transcriptional activity as well as IκB-α degradation and NF-κB translocation in a dose-dependent manner. Meanwhile, the activation of p38 MAPK and c-Jun N-terminal kinases (JNK) induced by LPS were decreased by MHNA.

Conclusions

MHNA inhibits the LPS-induced inflammatory response in murine macrophages via suppression of NF-κB and MAPKs signaling pathways activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

EMSA:

Electrophoretic mobility shift assay

ERK:

Extracellular signal-regulated kinases

iNOS:

Inducible nitric oxide synthase

IκB:

Inhibitory kappa B

IL-1β:

Interleukin-1beta

IL-6:

Interleukin-6

JNK:

c-Jun N-terminal kinases

LPS:

Lipopolysaccharide

MAPKs:

Mitogen-activated protein kinases

NO:

Nitric oxide

NF-κB:

Nuclear factor kappa B

PGE2 :

Prostaglandin E2

TNF-α:

Tumor necrosis factor alpha

References

  1. Yun KJ, Kim JY, Kim JB, Lee KW, Jeong SY, Park HJ, et al. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-kappa B inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways. Int Immunopharmacol. 2008;8:431–41.

    Article  PubMed  CAS  Google Scholar 

  2. Feng D, Ling WH, Duan RD. Lycopene suppresses LPS-induced NO and IL-6 production by inhibiting the activation of ERK, p38MAPK, and NF-kappaB in macrophages. Inflamm Res. 2010;59:115–21.

    Article  PubMed  CAS  Google Scholar 

  3. Wang JX, Hou LF, Yang Y, Tang W, Li Y, Zuo JP. SM905, an artemisinin derivative, inhibited NO and pro-inflammatory cytokine production by suppressing MAPK and NF-kappaB pathways in RAW 264.7 macrophages. Acta Pharmacol Sin. 2009;30:1428–35.

    Article  PubMed  Google Scholar 

  4. Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2000;6:21–33.

    Article  PubMed  CAS  Google Scholar 

  5. Szekanecz Z, Koch AE. Macrophages and their products in rheumatoid arthritis. Curr Opin Rheumatol. 2007;19:289–95.

    Article  PubMed  Google Scholar 

  6. Zernecke A, Weber C. Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol. 2005;100:93–101.

    Article  PubMed  CAS  Google Scholar 

  7. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene. 1999;18:6853–66.

    Article  PubMed  CAS  Google Scholar 

  8. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002;2:725–34.

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto Y, Gaynor RB. IkappaB kinases: key regulators of the NF-kappaB pathway. Trends Biochem Sci. 2004;29:72–9.

    Article  PubMed  CAS  Google Scholar 

  10. Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest. 2001;107:3–6.

    Article  PubMed  CAS  Google Scholar 

  11. Chen C, Chen YH, Lin WW. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology. 1999;97:124–9.

    Article  PubMed  CAS  Google Scholar 

  12. Kim YH, Lee SH, Lee JY, Choi SW, Park JW, Kwon TK. Triptolide inhibits murine-inducible nitric oxide synthase expression by down-regulating lipopolysaccharide-induced activity of nuclear factor-kappa B and c-Jun NH2-terminal kinase. Eur J Pharmacol. 2004;494:1–9.

    Article  PubMed  CAS  Google Scholar 

  13. Carter AB, Knudtson KL, Monick MM, Hunninghake GW. The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem. 1999;274:30858–63.

    Article  PubMed  CAS  Google Scholar 

  14. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94.

    Article  PubMed  CAS  Google Scholar 

  15. Kongkathip N, Hasitapan K, Pradidphol N, Kirtikara K, Jongkona N, Kongkathip B. Synthesis of novel 2-(2′-cyclopentyl)- and 2-(2′-cyclohexyl) substituted 1-naphthol derivatives with anticyclooxygenase activity. Curr Med Chem. 2006;13:3663–74.

    Article  PubMed  CAS  Google Scholar 

  16. Kongkathip B, Sangma C, Kirtikara K, Luangkamin S, Hasitapan K, Jongkon N, et al. Inhibitory effects of 2-substituted-1-naphthol derivatives on cyclooxygenase I and II. Bioorg Med Chem. 2005;13:2167–75.

    Article  PubMed  CAS  Google Scholar 

  17. Matsubara M, Yamachika E, Tsujigiwa H, Mizukawa N, Ueno T, Murakami J, et al. Suppressive effects of 1,4-dihydroxy-2-naphthoic acid administration on bone resorption. Osteoporos Int. 2010;21:1437–47.

    Article  PubMed  CAS  Google Scholar 

  18. Okada Y, Tsuzuki Y, Miyazaki J, Matsuzaki K, Hokari R, Komoto S, et al. Propionibacterium freudenreichii component 1.4-dihydroxy-2-naphthoic acid (DHNA) attenuates dextran sodium sulphate induced colitis by modulation of bacterial flora and lymphocyte homing. Gut. 2006;55:681–8.

    Article  PubMed  CAS  Google Scholar 

  19. Chanklan R, Mizunuma M, Kongkathip N, Hasitapan K, Kongkathip B, Miyakawa T. Identification of Saccharomyces cerevisiae Tub1 alpha-tubulin as a potential target for NKH-7, a cytotoxic 1-naphthol derivative compound. Biosci Biotechnol Biochem. 2008;72:1023–31.

    Article  PubMed  CAS  Google Scholar 

  20. Bauche F, Stephan JP, Touzalin AM, Jegou B. In vitro regulation of an inducible-type NO synthase in the rat seminiferous tubule cells. Biol Reprod. 1998;58:431–8.

    Article  PubMed  CAS  Google Scholar 

  21. Allen JB, Keng T, Privalle C. Nitric oxide and peroxynitrite production in ocular inflammation. Environ Health Perspect. 1998;106(Suppl 5):1145–9.

    Article  PubMed  CAS  Google Scholar 

  22. Nagy G, Clark JM, Buzas EI, Gorman CL, Cope AP. Nitric oxide, chronic inflammation and autoimmunity. Immunol Lett. 2007;111:1–5.

    Article  PubMed  CAS  Google Scholar 

  23. Bogdan C. Nitric oxide and the immune response. Nat Immunol. 2001;2:907–16.

    Article  PubMed  CAS  Google Scholar 

  24. Tripathi P, Tripathi P, Kashyap L, Singh V. The role of nitric oxide in inflammatory reactions. FEMS Immunol Med Microbiol. 2007;51:443–52.

    Article  PubMed  CAS  Google Scholar 

  25. Di RM, Radomski M, Carnuccio R, Moncada S. Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Commun. 1990;172:1246–52.

    Article  Google Scholar 

  26. Turini ME, DuBois RN. Cyclooxygenase-2: a therapeutic target. Annu Rev Med. 2002;53:35–57.

    Article  PubMed  CAS  Google Scholar 

  27. Williams TJ. The role of prostaglandins in inflammation. Ann R Coll Surg Engl. 1978;60:198–201.

    PubMed  CAS  Google Scholar 

  28. Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA. 1994;91:12013–7.

    Article  PubMed  CAS  Google Scholar 

  29. Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol. 2010;22:347–52.

    Article  PubMed  CAS  Google Scholar 

  30. Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27–55.

    Article  PubMed  CAS  Google Scholar 

  31. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol. 1990;8:253–78.

    Article  PubMed  Google Scholar 

  32. Hallegua DS, Weisman MH. Potential therapeutic uses of interleukin 1 receptor antagonists in human diseases. Ann Rheum Dis. 2002;61:960–7.

    Article  PubMed  CAS  Google Scholar 

  33. Braddock M, Quinn A. Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat Rev Drug Discov. 2004;3:330–9.

    Article  PubMed  CAS  Google Scholar 

  34. Hirano T. Interleukin-6 and its relation to inflammation and disease. Clin Immunol Immunopathol. 1992;62:S60–5.

    Article  PubMed  CAS  Google Scholar 

  35. Nishimoto N. Interleukin-6 as a therapeutic target in candidate inflammatory diseases. Clin Pharmacol Ther. 2010;87:483–7.

    Article  PubMed  CAS  Google Scholar 

  36. Molto A, Olive A. Anti-IL-1 molecules: new comers and new indications. Joint Bone Spine. 2010;77:102–7.

    Article  PubMed  CAS  Google Scholar 

  37. Zhou HY, Shin EM, Guo LY, Youn UJ, Bae K, Kang SS, et al. Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW 264.7 macrophages via NF-kappaB, JNK and p38 MAPK inactivation. Eur J Pharmacol. 2008;586:340–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Science and Technology Bureau of Guangzhou (2006Z1-E6021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Jie Zhang or Shu-Guang Wu.

Additional information

Responsible Editor: Liwu Li.

Jun-Yan Zhang and Hong Jin contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, JY., Jin, H., Wang, GF. et al. Methyl-1-hydroxy-2-naphthoate, a novel naphthol derivative, inhibits lipopolysaccharide-induced inflammatory response in macrophages via suppression of NF-κB, JNK and p38 MAPK pathways. Inflamm. Res. 60, 851–859 (2011). https://doi.org/10.1007/s00011-011-0345-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0345-2

Keywords

Navigation