Skip to main content

Advertisement

Log in

Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Introduction

Protease inhibitors, including the Kunitz, Kazal, serpin and mucus families, play important roles in inhibiting protease activities during homeostasis, inflammation, tissue injury, and cancer progression. Interestingly, in addition to their anti-protease activity, protease inhibitors also often possess other intrinsic properties that contribute to termination of the inflammatory process, including modulation of cytokine expression, signal transduction and tissue remodeling. In this review we have tried to summarize recent findings on the Kunitz family of serine proteinase inhibitors and their implications in health and disease.

Materials and Methods

A systematic search was performed in the electronic databases PubMed and ScienceDirect up to October 2009. We tried to limit the review to anti-inflammatory actions and actions not related to protease inhibition.

Results and Conclusion

Recent studies have demonstrated that the Kunitz inhibitors are not only protease inhibitors, but can also prevent inflammation and tissue injury and subsequently promote tissue remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Roberts RM, Mathialagan N, Duffy JY, Smith GW. Regulation and regulatory role of proteinase inhibitors. Crit Rev Eukaryot Gene Expr. 1995;5:385–436.

    CAS  PubMed  Google Scholar 

  2. Ferencík M, Stvrtinová V, Hulín I, Novák M. Inflammation–a lifelong companion: attempt at a non-analytical holistic view. Folia Microbiol (Praha). 2007;52:159–73.

    Article  Google Scholar 

  3. Kobayashi H, Suzuki M, Hirashima Y, Terao T. The protease inhibitor bikunin, a novel anti-metastatic agent. Biol Chem. 2003;384:749–54.

    Article  CAS  PubMed  Google Scholar 

  4. Vincent JP, Lazdunski M. Trypsin-pancreatic trypsin inhibitor association: dynamics of the interaction and role of disulfide bridges. Biochemistry. 1972;11:2967–77.

    Article  CAS  PubMed  Google Scholar 

  5. Astrup T, Nissen U. Urinary trypsin inhibitor (Mingin): transformation into a new trypsin inhibitor by acid hydrolysis or by sialidase. Nature. 1964;203:255–7.

    Article  CAS  PubMed  Google Scholar 

  6. Shimomura T, Denda K, Kitamura A, Kawaguchi T, Kito M, Kondo J, Kagaya S, Qin L, Takata H, Miyazawa K, Kitamura N. Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem. 1997;272:6370–6.

    Article  CAS  PubMed  Google Scholar 

  7. Salem HT, Obiekwe BC, Al-Ani AT, Seppälä M, Chard T. Molecular heterogeneity of placental protein 5 (PP5) in late pregnancy serum and plasma: evidence for a heparin-PP5 polymer. Clin Chim Acta. 1980;107:211–5.

    Article  CAS  PubMed  Google Scholar 

  8. Ascenzi P, Bocedi A, Bolognesi M, Spallarossa A, Coletta M, De Cristofaro R, Menegatti E. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr Protein Pept Sci. 2003;4:231–51.

    Article  CAS  PubMed  Google Scholar 

  9. Day JR, Landis RC, Taylor KM. Aprotinin and the protease-activated receptor 1 thrombin receptor: antithrombosis, inflammation, and stroke reduction. Semin Cardiothorac Vasc Anesth. 2006;10:132–42.

    Article  CAS  PubMed  Google Scholar 

  10. Rattenholl A, Steinhoff M. Proteinase-activated receptor-2 in the skin: receptor expression, activation and function during health and disease. Drug News Perspect. 2008;21:369–81.

    Article  CAS  PubMed  Google Scholar 

  11. Mercer PF, Deng X, Chambers RC. Signaling pathways involved in proteinase-activated receptor1-induced proinflammatory and profibrotic mediator release following lung injury. Ann N Y Acad Sci. 2007;1096:86–8.

    Article  CAS  PubMed  Google Scholar 

  12. Kristeller JL, Roslund BP, Stahl RF. Benefits and risks of aprotinin use during cardiac surgery. Pharmacotherapy. 2008;28:112–24.

    Article  CAS  PubMed  Google Scholar 

  13. Dietrich W. Efficacy and safety of aprotinin in cardiac surgery. Orthopedics. 2004;27:s659–62.

    Google Scholar 

  14. Bosman M, Royston D. Aprotinin and renal dysfunction. Expert Opin Drug Saf. 2008;7:663–77.

    Article  CAS  PubMed  Google Scholar 

  15. Planès C, Caughey GH. Regulation of the epithelial Na+ channel by peptidases. Curr Top Dev Biol. 2007;78:23–46.

    Article  PubMed  CAS  Google Scholar 

  16. He H, Li W, Tseng DY, Zhang S, Chen SY, Day AJ, Tseng SC. Biochemical characterization and function of complexes formed by hyaluronan and the heavy chains of inter-alpha-inhibitor (HC*HA) purified from extracts of human amniotic membrane. J Biol Chem. 2009;284:20136–46.

    Article  CAS  PubMed  Google Scholar 

  17. Yoneda M, Suzuki S, Kimata K. Hyaluronic acid associated with the surfaces of cultured fibroblasts is linked to a serum-derived 85-kDa protein. J Biol Chem. 1990;265:5247–57.

    CAS  PubMed  Google Scholar 

  18. Salier JP, Rouet P, Raguenez G, Daveau M. The inter-alpha-inhibitor family: from structure to regulation. Biochem J. 1996;315:1–9.

    CAS  PubMed  Google Scholar 

  19. Chen L, Mao SJ, McLean LR, Powers RW, Larsen WJ. Proteins of the inter-alpha-trypsin inhibitor family stabilize the cumulus extracellular matrix through their direct binding with hyaluronic acid. J Biol Chem. 1994;269:28282–7.

    CAS  PubMed  Google Scholar 

  20. Menezes GB, McAvoy EF, Kubes P. Hyaluronan, platelets, and monocytes: a novel pro-inflammatory triad. Am J Pathol. 2009;174:1993–5.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol. 2007;23:435–61.

    Article  CAS  PubMed  Google Scholar 

  22. Zhuo L, Hascall VC, Kimata K. Inter-alpha-trypsin inhibitor, a covalent protein-glycosaminoglycan-protein complex. J Biol Chem. 2004;279:38079–82.

    Article  CAS  PubMed  Google Scholar 

  23. Forteza R, Casalino-Matsuda SM, Monzon ME, Fries E, Rugg MS, Milner CM, Day AJ. TSG-6 potentiates the antitissue kallikrein activity of inter-alpha-inhibitor through bikunin release. Am J Respir Cell Mol Biol. 2007;36:20–31.

    Article  CAS  PubMed  Google Scholar 

  24. Milner CM, Higman VA, Day AJ. TSG-6: a pluripotent inflammatory mediator? Biochem Soc Trans. 2006;34:446–50.

    Article  CAS  PubMed  Google Scholar 

  25. Rugg MS, Willis AC, Mukhopadhyay D, Hascall VC, Fries E, Fülöp C, Milner CM, Day AJ. Characterization of complexes formed between TSG-6 and inter-alpha-inhibitor that act as intermediates in the covalent transfer of heavy chains onto hyaluronan. J Biol Chem. 2005;280:25674–86.

    Article  CAS  PubMed  Google Scholar 

  26. Garantziotis S, Hollingsworth JW, Ghanayem RB, Timberlake S, Zhuo L, Getting SJ, Mahoney DJ, Cao T, Rugg MS, Fries E, Milner CM, Perretti M, Day AJ. The link module from human TSG-6 inhibits neutrophil migration in a hyaluronan- and inter-alpha -inhibitor-independent manner. J Biol Chem. 2002;277:51068–76.

    Article  Google Scholar 

  27. Kehlen A, Pachnio A, Thiele K, Langner J. Gene expression induced by interleukin-17 in fibroblast-like synoviocytes of patients with rheumatoid arthritis: upregulation of hyaluronan-binding protein TSG-6. Arthritis Res Ther. 2003;5:R186–92.

    Article  CAS  PubMed  Google Scholar 

  28. Agrawal A, Singh PP, Bottazzi B, Garlanda C, Mantovani A. Pattern recognition by pentraxins. Adv Exp Med Biol. 2009;653:98–116.

    Article  PubMed  Google Scholar 

  29. Lee GW, Lee TH, Vilcek J. TSG-14, a tumor necrosis factor- and IL-1-inducible protein, is a novel member of the pentaxin family of acute phase proteins. J Immunol. 1993;150:1804–12.

    CAS  PubMed  Google Scholar 

  30. Scarchilli L, Camaioni A, Bottazzi B, Negri V, Doni A, Deban L, Bastone A, Salvatori G, Mantovani A, Siracusa G, Salustri A. PTX3 interacts with inter-alpha-trypsin inhibitor: implications for hyaluronan organization and cumulus oophorus expansion. J Biol Chem. 2007;282:30161–70.

    Article  CAS  PubMed  Google Scholar 

  31. Souza DG, Amaral FA, Fagundes CT, Coelho FM, Arantes RM, Sousa LP, Matzuk MM, Garlanda C, Mantovani A, Dias AA, Teixeira MM. The long pentraxin PTX3 is crucial for tissue inflammation after intestinal ischemia and reperfusion in mice. Am J Pathol. 2009;174:1309–18.

    Article  CAS  PubMed  Google Scholar 

  32. Adair JE, Stober V, Sobhany M, Zhuo L, Roberts JD, Negishi M, Kimata K, Garantziotis S. Inter-alpha-trypsin inhibitor promotes bronchial epithelial repair after injury through vitronectin binding. J Biol Chem. 2009;284:16922–30.

    Article  CAS  PubMed  Google Scholar 

  33. Jessen TE, Odum L, Johnsen AH. In vivo binding of human inter-alpha-trypsin inhibitor free heavy chains to hyaluronic acid. Biol Chem Hoppe-Seyler. 1994;375:521–6.

    CAS  PubMed  Google Scholar 

  34. Selbi W, Day AJ, Rugg MS, Fülöp C, de la Motte CA, Bowen T, Hascall VC, Phillips AO. Overexpression of hyaluronan synthase 2 alters hyaluronan distribution and function in proximal tubular epithelial cells. J Am Soc Nephrol. 2006;17:1553–67.

    Article  CAS  PubMed  Google Scholar 

  35. Hinshelwood J, Spencer DI, Edwards YJ, Perkins SJ. Identification of the C3b binding site in a recombinant vWF-A domain of complement factor B by surface-enhanced laser desorption-ionization affinity mass spectrometry and homology modelling: implications for the activity of factor B. J Mol Biol. 1999;294:587–99.

    Article  CAS  PubMed  Google Scholar 

  36. Boackle SA. Complement and autoimmunity. Biomed Pharmacother. 2003;57:269–73.

    Article  CAS  PubMed  Google Scholar 

  37. Hamm A, Veeck J, Bektas N, Wild PJ, Hartmann A, Heindrichs U, Kristiansen G, Werbowetski-Ogilvie T, Del Maestro R, Knuechel R, Dahl E. Frequent expression loss of Inter-alpha-trypsin inhibitor heavy chain (ITIH) genes in multiple human solid tumors: a systematic expression analysi. BMC Cancer. 2008;8:25.

    Article  PubMed  CAS  Google Scholar 

  38. Wu R, Cui X, Lim YP, Bendelja K, Zhou M, Simms HH, Wang P. Delayed administration of human inter-alpha inhibitor proteins reduces mortality in sepsis. Crit Care Med. 2004;32:1747–52.

    Article  CAS  PubMed  Google Scholar 

  39. Yang S, Lim YP, Zhou M, Salvemini P, Schwinn H, Josic D, Koo DJ, Chaudry IH, Wang P. Administration of human inter-alpha-inhibitors maintains hemodynamic stability and improves survival during sepsis. Crit Care Med. 2002;30:617–22.

    Article  CAS  PubMed  Google Scholar 

  40. Wachter E, Hochstrasser K. Kunitz-type proteinase inhibitors derived by limited proteolysis of the inter-alpha-trypsin inhibitor, IV. The amino acid sequence of the human urinary trypsin inhibitor isolated by affinity chromatography. Hoppe Seylers Z Physiol Chem. 1981;362:1351–5.

    CAS  PubMed  Google Scholar 

  41. Fries E, Blom AM. Bikunin-not just a plasma proteinase inhibitor. Int J Biochem Cell Biol. 2000;32:125–37.

    Article  CAS  PubMed  Google Scholar 

  42. Yoshida E, Sumi H, Tsushima H, Maruyama M, Mihara H. Distribution and localization of inter-alpha-trypsin inhibitor and its active component acid-stable proteinase inhibitor: comparative immunohistochemical study. Inflammation. 1991;15:71–9.

    Article  CAS  PubMed  Google Scholar 

  43. Yoshihara Y, Plaas A, Osborn B, Margulis A, Nelson F, Stewart M, Rugg MS, Milner CM, Day AJ, Nemoto K, Sandy JD. Superficial zone chondrocytes in normal and osteoarthritic human articular cartilages synthesize novel truncated forms of inter-alpha-trypsin inhibitor heavy chains which are attached to a chondroitin sulfate proteoglycan other than bikunin. Osteoarthritis Cartilage. 2008;16:1343–55.

    Article  CAS  PubMed  Google Scholar 

  44. Itoh H, Tomita M, Kobayashi T, Uchino H, Maruyama H, Nawa Y. Expression of inter-alpha-trypsin inhibitor light chain (bikunin) in human pancreas. J Biochem. 1996;120:271–5.

    CAS  PubMed  Google Scholar 

  45. Lin SD, Takikawa Y, Endo R, Suzuki K. Proinflammatory cytokines up-regulate synthesis and secretion of urinary trypsin inhibitor in human hepatoma HepG2 cells. Hepatol Res. 2004;29:243–8.

    Article  CAS  PubMed  Google Scholar 

  46. Imada K, Ito A, Kanayama N, Terao T, Mori Y. Urinary trypsin inhibitor suppresses the production of interstitial procollagenase/proMMP-1 and prostromelysin 1/proMMP-3 in human uterine cervical fibroblasts and chorionic cells. FEBS Lett. 1997;417:337–40.

    Article  CAS  PubMed  Google Scholar 

  47. Zaitsu M, Hamasaki Y, Tashiro K, Matsuo M, Ichimaru T, Fujita I, Tasaki H, Miyazaki S. Ulinastatin, an elastase inhibitor, inhibits the increased mRNA expression of prostaglandin H2 synthase-type 2 in Kawasaki disease. J Infect Dis. 2000;181:1101–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kobayashi H, Suzuki M, Sun GW, Hirashima Y, Terao T. Suppression of urokinase-type plasminogen activator expression from human ovarian cancer cells by urinary trypsin inhibitor. Biochim Biophys Acta. 2000;1481:310–6.

    CAS  PubMed  Google Scholar 

  49. Yamaguchi Y, Ohshiro H, Nagao Y, Odawara K, Okabe K, Hidaka H, Ishihara K, Uchino S, Furuhashi T, Yamada S, Mori K, Ogawa M. Urinary trypsin inhibitor reduces C-X-C chemokine production in rat liver ischemia/reperfusion. J Surg Res. 2000;94:107–15.

    Article  CAS  PubMed  Google Scholar 

  50. Aosasa S, Ono S, Mochizuki H, Tsujimoto H, Ueno C, Matsumoto A. Mechanism of the inhibitory effect of protease inhibitor on tumor necrosis factor alpha production of monocytes. Shock. 2001;15:101–5.

    Article  CAS  PubMed  Google Scholar 

  51. Molor-Erdene P, Okajima K, Isobe H, Uchiba M, Harada N, Okabe H. Urinary trypsin inhibitor reduces LPS-induced hypotension by suppressing tumor necrosis factor-alpha production through inhibition of Egr-1 expression. Am J Physiol Heart Circ Physiol. 2005;288:H1265–71.

    Article  CAS  PubMed  Google Scholar 

  52. Molor-Erdene P, Okajima K, Isobe H, Uchiba M, Harada N, Shimozawa N, Okabe H. Inhibition of lipopolysaccharide-induced tissue factor expression in monocytes by urinary trypsin inhibitor in vitro and in vivo. Thromb Haemost. 2005;94:136–45.

    CAS  PubMed  Google Scholar 

  53. Wu YJ, Ling Q, Zhou XH, Wang Y, Xie HY, Yu JR, Zheng SS. Urinary trypsin inhibitor attenuates hepatic ischemia-reperfusion injury by reducing nuclear factor-kappa B activation. Hepatobiliary Pancreat Dis Int. 2009;8:53–8.

    CAS  PubMed  Google Scholar 

  54. Wakahara K, Kobayashi H, Yagyu T, Matsuzaki H, Kondo T, Kurita N, Sekino H, Inagaki K, Suzuki M, Kanayama N, Terao T. Bikunin suppresses lipopolysaccharide-induced lethality through down-regulation of tumor necrosis factor- alpha and interleukin-1 beta in macrophages. J Infect Dis. 2005;191:930–8.

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki M, Kobayashi H, Tanaka Y, Hirashima Y, Kanayama N, Takei Y, Saga Y, Suzuki M, Itoh H, Terao T. Bikunin target genes in ovarian cancer cells identified by microarray analysis. J Biol Chem. 2003;278:14640–6.

    Article  CAS  PubMed  Google Scholar 

  56. Kanayama N, Maehara K, She L, Belayet HM, Khatun S, Tokunaga N, Terao T. Urinary trypsin inhibitor suppresses vascular smooth muscle contraction by inhibition of Ca2 + influx. Biochim Biophys Acta. 1998;1381:139–46.

    CAS  PubMed  Google Scholar 

  57. Kanayama S, Yamada Y, Onogi A, Shigetomi H, Ueda S, Tsuji Y, Haruta S, Kawaguchi R, Yoshida S, Sakata M, Sado T, Kitanaka T, Oi H, Yagyu T, Kobayashi H. Bikunin suppresses expression of pro-inflammatory cytokines induced by lipopolysaccharide in neutrophils. J Endotoxin Res. 2007;13:369–76.

    Article  CAS  PubMed  Google Scholar 

  58. Yu JR, Yan S, Liu XS, Wu YJ, Fu PF, Wu LH, Zheng SS. Attenuation of graft ischemia-reperfusion injury by urinary trypsin inhibitor in mouse intestinal transplantation. World J Gastroenterol. 2005;11:1605–9.

    CAS  PubMed  Google Scholar 

  59. Inoue K, Takano H, Yanagisawa R, Sakurai M, Shimada A, Yoshino S, Sato H, Yoshikawa T. Protective role of urinary trypsin inhibitor in acute lung injury induced by lipopolysaccharide. Exp Biol Med. (Maywood). 2005;230:281–7.

    CAS  Google Scholar 

  60. Zhou LW, Wang YL, Yan XT, He XH. Urinary trypsin inhibitor treatment ameliorates acute lung and liver injury resulting from sepsis in a rat model. Saudi Med J. 2008;29:368–73.

    PubMed  Google Scholar 

  61. El Maradny E, Kanayama N, Halim A, Maehara K, Kobayashi T, Terao T. Effects of urinary trypsin inhibitor on myometrial contraction in term and preterm deliveries. Gynecol Obstet Invest. 1996;41:96–102.

    Article  CAS  PubMed  Google Scholar 

  62. Pugia MJ, Valdes R Jr, Jortani SA. Bikunin (urinary trypsin inhibitor): structure, biological relevance, and measurement. Adv Clin Chem. 2007;44:223–45.

    Article  CAS  PubMed  Google Scholar 

  63. Rakic JM, Maillard C, Jost M, Bajou K, Masson V, Devy L, Lambert V, Foidart JM, Noel A. Role of plasminogen activator-plasmin system in tumor angiogenesis. Cell Mol Life Sci. 2003;60:463–73.

    Article  CAS  PubMed  Google Scholar 

  64. Yagyu T, Kobayashi H, Matsuzaki H, Wakahara K, Kondo T, Kurita N, Sekino H, Inagaki K. Enhanced spontaneous metastasis in bikunin-deficient mice. Int J Cancer. 2006;118:2322–8.

    Article  CAS  PubMed  Google Scholar 

  65. Tsui KH, Chang PL, Feng TH, Chung LC, Hsu SY, Juang HH. Down-regulation of matriptase by overexpression of bikunin attenuates cell invasion in prostate carcinoma cells. Anticancer Res. 2008;28:1977–83.

    CAS  PubMed  Google Scholar 

  66. Liu J, Guo Q, Chen B, Yu Y, Lu H, Li YY. Cathepsin B and its interacting proteins, bikunin and TSRC1, correlate with TNF-induced apoptosis of ovarian cancer cells OV-90. FEBS Lett. 2006;580:245–50.

    Article  CAS  PubMed  Google Scholar 

  67. Parr C, Jiang WG. Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer. 2006;119:1176–83.

    Article  CAS  PubMed  Google Scholar 

  68. Kirchhofer D, Peek M, Li W, Stamos J, Eigenbrot C, Kadkhodayan S, Elliott JM, Corpuz RT, Lazarus RA, Moran P. Tissue expression, protease specificity, and Kunitz domain functions of hepatocyte growth factor activator inhibitor-1B (HAI-1B), a new splice variant of HAI-1. J Biol Chem. 2003;278:36341–9.

    Article  CAS  PubMed  Google Scholar 

  69. Denda K, Shimomura T, Kawaguchi T, Miyazawa K, Kitamura N. Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 1. J Biol Chem. 2002;277:14053–9.

    Article  CAS  PubMed  Google Scholar 

  70. Itoh H, Kataoka H, Meng JY, Hamasuna R, Kitamura N, Koono M. Mouse hepatocyte growth factor activator inhibitor type 1 (HAI-1) and type 2 (HAI-2)/placental bikunin genes and their promoters. Biochim Biophys Acta. 2001;1519:92–5.

    CAS  PubMed  Google Scholar 

  71. Morris MR, Gentle D, Abdulrahman M, Maina EN, Gupta K, Banks RE, Wiesener MS, Kishida T, Yao M, The B, Latif F, Maher ER. Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res. 2005;65:4598–606.

    Article  CAS  PubMed  Google Scholar 

  72. Tanaka H, Fukushima T, Yorita K, Kawaguchi M, Kataoka H. Tissue injury alters the site of expression of hepatocyte growth factor activator inhibitor type 1 in bronchial epithelial cells. Hum Cell. 2009;22:11–7.

    Article  PubMed  Google Scholar 

  73. Szabo R, Molinolo A, List K, Bugge TH. Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene. 2007;26:1546–56.

    Article  CAS  PubMed  Google Scholar 

  74. Torres-Collado AX, Kisiel W, Iruela-Arispe ML, Rodríguez-Manzaneque JC. ADAMTS1 interacts with, cleaves, and modifies the extracellular location of the matrix inhibitor tissue factor pathway inhibitor-2. J Biol Chem. 2006;281:17827–37.

    Article  CAS  PubMed  Google Scholar 

  75. Chand HS, Foster DC, Kisiel W. Structure, function and biology of tissue factor pathway inhibitor-2. Thromb Haemost. 2005;94:1122–30.

    CAS  PubMed  Google Scholar 

  76. Schmidt AE, Chand HS, Cascio D, Kisiel W, Bajaj SP. Crystal structure of Kunitz domain 1 (KD1) of tissue factor pathway inhibitor-2 in complex with trypsin. Implications for KD1 specificity of inhibition. J Biol Chem. 2005;280:27832–8.

    Article  CAS  PubMed  Google Scholar 

  77. Crawley JT, Lane DA. The haemostatic role of tissue factor pathway inhibitor. Arterioscler Thromb Vasc Biol. 2008;28:233–42.

    Article  CAS  PubMed  Google Scholar 

  78. Kato H. Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: basic and clinical aspects. Arterioscler Thromb Vasc Biol. 2002;22:539–48.

    Article  CAS  PubMed  Google Scholar 

  79. Lanir N, Aharon A, Brenner B. Procoagulant and anticoagulant mechanisms in human placenta. Semin Thromb Hemost. 2003;29:175–84.

    Article  CAS  PubMed  Google Scholar 

  80. Guo H, Lin Y, Zhang H, Liu J, Zhang N, Li Y, Kong D, Tang Q, Ma D. Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol. 2007;8:110.

    Article  PubMed  CAS  Google Scholar 

  81. Liu YY, Stack SM, Lakka SS, Khan AJ, Woodley DT, Rao JS, Rao CN. Matrix localization of tissue factor pathway inhibitor-2/matrix-associated serine protease inhibitor (TFPI-2/MSPI) involves arginine-mediated ionic interactions with heparin and dermatan sulfate: heparin accelerates the activity of TFPI-2/MSPI toward plasmin. Arch Biochem Biophys. 1999;370:8–112.

    Article  Google Scholar 

  82. Lin YF, Zhang N, Guo HS, Kong DS, Jiang T, Liang W, Zhao ZH, Tang QQ, Ma D. Recombinant tissue factor pathway inhibitor induces apoptosis in cultured rat mesangial cells via its Kunitz-3 domain and C-terminal through inhibiting PI3-kinase/Akt pathway. Apoptosis. 2007;12:2163–73.

    Article  CAS  PubMed  Google Scholar 

  83. Ivanciu L, Gerard RD, Tang H, Lupu F, Lupu C. Adenovirus-mediated expression of tissue factor pathway inhibitor-2 inhibits endothelial cell migration and angiogenesis. Arterioscler Thromb Vasc Biol. 2007;27:310–6.

    Article  CAS  PubMed  Google Scholar 

  84. Lwaleed BA, Bass PS. Tissue factor pathway inhibitor: structure, biology and involvement in disease. J Pathol. 2006;208:327–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (to H. K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kobayashi.

Additional information

Responsible Editor: J. Skotnicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shigetomi, H., Onogi, A., Kajiwara, H. et al. Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain. Inflamm. Res. 59, 679–687 (2010). https://doi.org/10.1007/s00011-010-0205-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-010-0205-5

Keywords

Navigation