Skip to main content

Advertisement

Log in

Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

To observe the therapeutic effect of RelB-silenced dendritic cells (DCs) in experimental autoimmune myasthenia gravis (EAMG), and further to investigate the mechanism of this immune system therapeutic.

Methods

(1) RelB-silenced DCs and control DCs were prepared and the supernatants were collected for IL-12p70, IL-6, and IL-23 measurement by ELISA. (2) RelB-silenced DCs and control DCs were co-cultured with AChR-specific T cells, and the supernatant was collected to observe the IL-17, IFN-γ, IL-4 production. (3) EAMG mice with clinical scores of 1 to 2 were collected and enrolled randomly into the RelB-silenced DC group or the control DC group. RelB-silenced DCs or an equal amount of control DCs were injected intravenously on days 0, 7, and 14 after enrollment. Clinical scores were evaluated every other day. Twenty days after allotment, serum from individual mice was collected to detect serum concentrations of anti-mouse AChR IgG, IgG1, IgG2b, and IgG2c. The splenocytes were isolated for analysis of lymphocyte proliferative responses, cytokine (IL-17, IFN-γ, IL-4) production, and protein levels of RORγt, T-bet, GATA-3, and FoxP3 (the special transcription factors of Th17, Th1, Th2, and Treg, respectively).

Results

(1) RelB-silenced DCs produced significantly reduced amounts of IL-12p70, IL-6, and IL-23, as compared with control DCs. (2) RelB-silenced DCs spurred on the CD4+ T cells from Th1/Th17 to the Th2 cell subset in the co-culture system. (3) Treatment with RelB-silenced DCs effectively reduced myasthenic symptoms and levels of serum anti-acetylcholine receptor autoantibody in mice with ongoing EAMG. Th17-related markers (RORγt, IL-17) and Th1-related markers (T-bet, IFN-γ) were downregulated, whereas Th2 markers (IL-4 and GATA3) and Treg marker (FoxP3) were upregulated.

Conclusions

RelB-silenced DCs were able to create a particular cytokine environment that was absent of inflammatory cytokines. RelB-silenced DCs provide a practical means to normalize the differentiation of the four T-cell subsets (Th17, Th1, Th2, and Treg) in vivo, and thus possess therapeutic potential in Th1/Th17-dominant autoimmune disorders such as myasthenia gravis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vincent A, Palace J, Hilton-Jones D. Myasthenia gravis. Lancet. 2001;357:2122–8.

    Article  CAS  PubMed  Google Scholar 

  2. Berman PW, Patrick J. Linkage between the frequency of muscular weakness and loci that regulate immune responsiveness in murine experimental myasthenia gravis. J Exp Med. 1980;151:204–23.

    Article  CAS  PubMed  Google Scholar 

  3. Hughes BW, Moro De Casillas ML, Kaminski HJ. Pathophysiology of myasthenia gravis. Semin Neurol. 2004;24:21–30.

    Article  PubMed  Google Scholar 

  4. Elson CJ, Barker RN. Helper T cells in antibody-mediated, organ-specific autoimmunity. Curr Opin Immunol. 2000;12:664–9.

    Article  CAS  PubMed  Google Scholar 

  5. Murphy KM, Reiner SL. The lineage decisions of helper T cells. Nat Rev Immunol. 2002;2(12):933–44.

    Article  CAS  PubMed  Google Scholar 

  6. Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73.

    Article  CAS  PubMed  Google Scholar 

  7. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6(11):1133–41.

    Article  CAS  PubMed  Google Scholar 

  8. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121–33.

    Article  CAS  PubMed  Google Scholar 

  9. Wang W, Milani M, Ostlie N, Okita D, Agarwal RK, Caspi RR, et al. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. J Immunol. 2007;178:7072–80.

    CAS  PubMed  Google Scholar 

  10. Bai Y, Liu R, Huang D, La Cava A, Tang YY, Iwakura Y, et al. CCL2 recruitment of IL-6-producing CD11b+ monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. Eur J Immunol. 2008;38:1877–88.

    Article  CAS  PubMed  Google Scholar 

  11. Miller SD, McMahon EJ, Schreiner B, Bailey SL. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann NY Acad Sci. 2007;1103:179–91.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Yang H, Xiao B, Wu M, Zhou W, Li J, et al. Dendritic cells transduced with lentiviral-mediated RelB-specific ShRNAs inhibit the development of experimental autoimmune myasthenia gravis. Mol Immunol. 2009;46:657–67.

    Article  CAS  PubMed  Google Scholar 

  13. Yang H, Goluszko E, David C, Okita DK, Conti-Fine B, Chan TS, et al. Mapping myasthenia gravis-associated T cell epitopes on human acetylcholine receptors in HLA transgenic mice. J Clin Invest. 2002;109(8):1111–20.

    CAS  PubMed  Google Scholar 

  14. Wu B, Goluszko E, Christadoss P. Experimental autoimmune myasthenia gravis in the mouse. Curr Protoc Immunol. 2001; chapter 15: unit 15.8.

  15. Yang H, Kala M, Scott BG, Goluszko E, Chapman HA, Christadoss P. Cathepsin S is required for murine autoimmune myasthenia gravis pathogensis. J Immunol. 2005;174:1729–37.

    CAS  PubMed  Google Scholar 

  16. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22(3):329–41.

    Article  CAS  PubMed  Google Scholar 

  17. Vlad G, Cortesini R, Suciu-Foca N. License to heal: bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC. J Immunol. 2005;174:5907–14.

    CAS  PubMed  Google Scholar 

  18. Lu L, Li W, Zhong C, Qian S, Fung JJ, Thomson AW, et al. Increased apoptosis of immunoreactive host cells and augmented donor leukocyte chimerism, not sustained inhibition of B7 molecule expression, are associated with prolonged cardiac allograft survival in mice preconditioned with immature donor dendritic cells plus anti-CD40L mAb. Transplantation. 1999;68(6):747–57.

    Article  CAS  PubMed  Google Scholar 

  19. Nouri-Shirazi M, Guinet E. Direct and indirect cross-tolerance of alloreactive T cells by dendritic cells retained in the immature stage. Transplantation. 2002;74:1035–44.

    Article  CAS  PubMed  Google Scholar 

  20. Buonocore S, Flamand V, Goldman M, Braun MY. Bone marrow derived immature dendritic cells prime in vivo alloreactive T cells for interleukin-4-dependent rejection of major histocompatibility complex class II antigen-disparate cardiac allograft. Transplantation. 2003;75(3):407–13.

    Article  CAS  PubMed  Google Scholar 

  21. Christensen HR, Frøkiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol. 2002;168(1):171–8.

    CAS  PubMed  Google Scholar 

  22. Watanabe N, Wang YH, Lee HK, Ito T, Wang YH, Cao W, et al. Hassall’s corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature. 2005;436(7054):1181–5.

    Article  CAS  PubMed  Google Scholar 

  23. Martin E, O’Sullivan B, Low P, Thomas R. Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity. 2003;18(1):155–67.

    Article  CAS  PubMed  Google Scholar 

  24. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.

    Article  CAS  PubMed  Google Scholar 

  25. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  CAS  PubMed  Google Scholar 

  26. Hannon GJ. RNA interference. Nature. 2002;418(6894):244–51.

    Article  CAS  PubMed  Google Scholar 

  27. Ageichik A, Collins MK, Dewannieux M. Lentivector targeting to dendritic cells. Mol Ther. 2008;16(6):1008–9.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang HR, Muckersie E, Robertson M, Forrester JV. Antigen-specific inhibition of experimental autoimmune uveoretinitis by bone marrow-derived immature dendritic cells. Invest Ophthalmol Vis Sci. 2003;44:1598–607.

    Article  PubMed  Google Scholar 

  29. Waibler Z, Kalinke U, Will J, Juan MH, Pfeilschifter JM, Radeke HH. TLR-ligand stimulated interleukin-23 subunit expression and assembly is regulated differentially in murine plasmacytoid and myeloid dendritic cells. Mol Immunol. 2007;44:1483–9.

    Article  CAS  PubMed  Google Scholar 

  30. Milani M, Ostlie N, Wu H, Wang W, Conti-Fine BM. CD4+ T and B cells cooperate in the immunoregulation of experimental autoimmune myasthenia gravis. J Neuroimmunol. 2006;179(1–2):152–62.

    Article  CAS  PubMed  Google Scholar 

  31. Saoudi A, Bernard I, Hoedemaekers A, Cautain B, Martinez K, Druet P, et al. Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1- or Th2-type immune response in rats. J Immunol. 1999;162(12):7189–97.

    CAS  PubMed  Google Scholar 

  32. Balasa B, Deng C, Lee J, Bradley LM, Dalton DK, Christadoss P, et al. Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med. 1997;186(3):385–91.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang GX, Xiao BG, Bai XF, van der Meide PH, Orn A, Link H. Mice with IFN-gamma receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. J Immunol. 1999;162(7):3775–81.

    CAS  PubMed  Google Scholar 

  34. Balasa B, Deng C, Lee J, Christadoss P, Sarvetnick N. The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. J Immunol. 1998;161(6):2856–62.

    CAS  PubMed  Google Scholar 

  35. Karachunski PI, Ostlie NS, Okita DK, Conti-Fine BM. Interleukin-4 deficiency facilitates development of experimental myasthenia gravis and precludes its prevention by nasal administration of CD4+ epitope sequences of the acetylcholine receptor. J Neuroimmunol. 1999;95(1–2):73–84.

    Article  CAS  PubMed  Google Scholar 

  36. Milani M, Ostlie N, Wang W, Conti-Fine BM. T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann NY Acad Sci. 2003;998:284–307.

    Article  CAS  PubMed  Google Scholar 

  37. Sheng JR, Li L, Ganesh BB, Vasu C, Prabhakar BS, Meriggioli MN. Suppression of experimental autoimmune myasthenia gravis by granulocyte–macrophage colony-stimulating factor is associated with an expansion of FoxP3+ regulatory T cells. J Immunol. 2006;177(8):5296–306.

    CAS  PubMed  Google Scholar 

  38. Zhang GX, Yu S, Gran B, Li J, Siglienti I, Chen X, et al. Role of IL-12 receptor beta 1 in regulation of T cell response by APC in experimental autoimmune encephalomyelitis. J Immunol. 2003;171:4485–92.

    CAS  PubMed  Google Scholar 

  39. Liu R, Campagnolo D, Vollmer T, Shi FD. Transcriptional factor T-bet determines the susceptibility to experimental myasthenia gravis. Clin Immunol. 2008;127(Suppl 1):S48.

    Google Scholar 

  40. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441(7090):235–8.

    Article  CAS  PubMed  Google Scholar 

  41. Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 2006;24(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  42. Mangan PR, Harrington LE, O’Quinn DB, Helms WS, Bullard DC, Elson CO, et al. Transforming growth factor-beta induces development of the T(H)17 lineage. Nature. 2006;441(7090):231–4.

    Article  CAS  PubMed  Google Scholar 

  43. Serada S, Fujimoto M, Mihara M, Koike N, Ohsugi Y, Nomura S, et al. IL-6 blockade inhibits the induction of myelin antigen-specific Th17 cells and Th1 cells in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2008;105:9041–6.

    Article  CAS  PubMed  Google Scholar 

  44. Notley CA, Inglis JJ, Alzabin S, McCann FE, McNamee KE, Williams RO. Blockade of tumor necrosis factor in collagen-induced arthritis reveals a novel immunoregulatory pathway for Th1 and Th17 cells. J Exp Med. 2008;205(11):2491–7.

    Article  CAS  PubMed  Google Scholar 

  45. Balandina A, Lécart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005;105:735–41.

    Article  CAS  PubMed  Google Scholar 

  46. Sun Y, Qiao J, Lu CZ, Zhao CB, Zhu XM, Xiao BG. Increase of circulating CD4+CD25+ T cells in myasthenia gravis patients with stability and thymectomy. Clin Immunol. 2004;112:284–9.

    Article  CAS  PubMed  Google Scholar 

  47. Weaver CT, Harrington LE, Mangan PR, Gavrieli M, Murphy KM. Th17: an effector CD4 T cell lineage with regulatory T cell ties. Immunity. 2006;24(6):677–88.

    Article  CAS  PubMed  Google Scholar 

  48. Yang J, Bernier SM, Ichim TE, Li M, Xia X, Zhou D, et al. LF15–0195 generates tolerogenic dendritic cells by suppression of NF-κB signaling through inhibition of IKK activity. J Leukoc Biol. 2003;74(3):438–47.

    Article  CAS  PubMed  Google Scholar 

  49. Li M, Zhang X, Zheng X, Lian D, Zhang ZX, Ge W, et al. Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference. J Immunol. 2007;178:5480–7.

    CAS  PubMed  Google Scholar 

  50. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201(2):233–40.

    Article  CAS  PubMed  Google Scholar 

  51. Chen Z, Laurence A, O’Shea JJ. Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Semin Immunol. 2007;19(6):400–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30870857) and Hunan Natural Science Foundation (09JJ3079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Xiao.

Additional information

Responsible Editor: G. Wallace.

H. Yang and Y. Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Zhang, Y., Wu, M. et al. Suppression of ongoing experimental autoimmune myasthenia gravis by transfer of RelB-silenced bone marrow dentritic cells is associated with a change from a T helper Th17/Th1 to a Th2 and FoxP3+ regulatory T-cell profile. Inflamm. Res. 59, 197–205 (2010). https://doi.org/10.1007/s00011-009-0087-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0087-6

Keywords

Navigation