Skip to main content
Log in

A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper a new version of the chain rule for calculating the mean square derivative of a second-order stochastic process is proven. This random operational calculus rule is applied to construct a rigorous mean square solution of the random Chebyshev differential equation (r.C.d.e.) assuming mild moment hypotheses on the random variables that appear as coefficients and initial conditions of the corresponding initial value problem. Such solution is represented through a mean square random power series. Moreover, reliable approximations for the mean and standard deviation functions to the solution stochastic process of the r.C.d.e. are given. Several examples, that illustrate the theoretical results, are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Analytic stochastic process solutions of second-order random differential equations. Appl. Math. Lett. 23(12), 1421–1424 (2010). doi:10.1016/j.aml.2010.07.011

    Article  MathSciNet  MATH  Google Scholar 

  2. El-Tawil, M.A., El-Sohaly, M.: Mean square numerical methods for initial value random differential equations. Open J. Discret. Math. 1(1), 164–171 (2011). doi:10.4236/ojdm.2011.12009

    Article  MathSciNet  Google Scholar 

  3. Khodabin, M., Maleknejad, K., Rostami, K., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge Kutta methods. Math. Comp. Model. 59(9–10), 1910–1920 (2010). doi:10.1016/j.mcm.2011.01.018

    MathSciNet  MATH  Google Scholar 

  4. Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216(5), 1524–1530 (2010). doi:10.1016/j.amc.2010.03.001

    MathSciNet  MATH  Google Scholar 

  5. González Parra, G., Chen-Charpentier, B.M., Arenas, A.J.: Polynomial Chaos for random fractional order differential equations. Appl. Math. Comput. 226(1), 123–130 (2014). doi:10.1016/j.amc.2013.10.51

    MathSciNet  MATH  Google Scholar 

  6. El-Beltagy, M.A., El-Tawil, M.A.: Toward a solution of a class of non-linear stochastic perturbed PDEs using automated WHEP algorithm. Appl. Math. Model. 37(12–13), 7174–7192 (2013). doi:10.1016/j.apm.2013.01.038

    Article  MathSciNet  Google Scholar 

  7. Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015). doi:10.1007/s00009-014-0452-8

    Article  MathSciNet  MATH  Google Scholar 

  8. Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comp. Math. Appl. 59(1), 115–125 (2010). doi:10.1016/j.camwa.2009.08.061

    Article  MathSciNet  MATH  Google Scholar 

  9. Øksendal, B.: Stochastic differential equations: an introduction with applications, 6th edn. Springer, Berlin (2007)

    MATH  Google Scholar 

  10. Soong, T.T.: Random differential equations in science and engineering. Academic Press, New York (1973)

    MATH  Google Scholar 

  11. Wong, B., Hajek, B.: Stochastic processes in engineering systems. Springer Verlag, New York (1985)

    Book  MATH  Google Scholar 

  12. Arnold, L.: Stochastic differential equations. Theory and applications. John Wiley, New York (1974)

    MATH  Google Scholar 

  13. Cortés, J.C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010). doi:10.1016/j.camwa.2010.05.046

    Article  MathSciNet  MATH  Google Scholar 

  14. Calbo, G., Cortés, J.C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comp. 218(7), 3654–3666 (2011). doi:10.1016/j.amc.2011.09.008

    Article  MathSciNet  MATH  Google Scholar 

  15. Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: Mean square power series solution and its statistical functions. Comp. Math. Appl. 61(9), 2782–2792 (2010). doi:10.1016/j.camwa.2011.03.045

    Article  MathSciNet  MATH  Google Scholar 

  16. Cortés, J.C., Jódar, L., Company, R., Villafuerte, L.: Laguerre random polynomials: definition, differential and statistical properties. Utilit. Math. 98, 283–293 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comp. Appl. Math. 309, 383–395 (2017). doi:10.1016/j.cam.2016.01.034

    Article  MathSciNet  MATH  Google Scholar 

  18. Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Romanian Reports Physics 65(2), 1237–1244 (2013)

    Google Scholar 

  19. Khalaf, S.L.: Mean square solutions of second-order random differential equations by using homotopy perturbation method. Int. Math. Forum 6(48), 2361–2370 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Khudair, A.R., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 5(49), 2521–2535 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Agarwal, R.P., O’Regan, D.: Ordinary and partial differential equations. Springer, New York (2009)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-C. Cortés.

Additional information

This work was completed with the support of our TeX-pert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortés, JC., Villafuerte, L. & Burgos, C. A Mean Square Chain Rule and its Application in Solving the Random Chebyshev Differential Equation. Mediterr. J. Math. 14, 35 (2017). https://doi.org/10.1007/s00009-017-0853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0853-6

Mathematics Subject Classification

Keywords

Navigation