Skip to main content
Log in

On the Gamma Matrix Representations of SO(8) and Clifford Algebras

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

The gamma matrix representation of 28-dimensional SO(8) algebra, which contains the standard and additional spin operators, is under consideration. The 64-dimensional representations of the Clifford algebras \(\textit{C}\ell ^{\mathbb {R}}\)(4,2) and \(\textit{C}\ell ^{\mathbb {R}}\)(0,6) in the terms of Dirac \(\gamma \) matrices are considered as well. The SO(8) and Clifford algebras are determined as the algebras over the field of real numbers. The relationships between the suggested representations of the SO(8) and Clifford algebras are investigated. The role of matrix representations of such algebras in the quantum field theory is discussed briefly. Recent failed interpretation is overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aurilia, A., Kobayashi, M., Takahashi, Y.: Remarks on the constraint structure and the quantization of the Rarita–Schwinger field. Phys. Rev. D. 22, 1368–1374 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bargman, V., Wigner, E.P.: Group theoretical discussion of relativistic wave equations. Proc. Nat Acad. Sci. USA 34, 211–223 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bhabha, H.J.: Relativistic wave equations for the elementary particles. Rev. Mod. Phys. 17, 200–216 (1945)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bhabha, H.J.: On a class of relativistic wave equations of spin 3/2. Proc. Indian Acad. Sci. A. 6, 335–354 (1951)

    Article  MathSciNet  Google Scholar 

  5. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields. New York (1980)

  6. Capri, A.Z., Kobes, R.L.: Further problems in spin-3/2 field theories. Phys. Rev. D. 22, 1967–1978 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cox, W.: On the Lagrangian and Hamiltonian constraint algorithms for the Rarita–Schwinger field coupled to an external electromagnetic field. J. Phys. A. 22, 1599–1608 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. Darkhosh, T.: Is there a solution to the Rarita–Schwinger wave equation in the presence of an external electromagnetic field? Phys. Rev. D. 32, 3251–3256 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dong, S.H.: Wave Equations in Higher Dimensions. New York (2011)

  10. Elliott, J., Dawber, P.: Symmetry in Physics. vol. 1, London (1979)

  11. Fierz, M.: Uber die relativistische Theorie kraftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta 12, 3–37 (1939)

    Article  Google Scholar 

  12. Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A. 173, 211–232 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  13. Foldy, L.L.: Synthesis of covariant particle equations. Phys. Rev. 102, 568–581 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  14. Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29–36 (1950)

    Article  ADS  Google Scholar 

  15. Garbaczewski, P.: The method of boson expansion in quantum theory. Phys. Rep. 36, 66–135 (1978)

    Article  ADS  Google Scholar 

  16. Garbaczewski, P.: Nongrassman quantization of the Dirac system. Phys. Lett. A. 73, 280–282 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  17. Garbaczewski, P.: Boson–Fermion duality in four dimensions: comments on the paper of Luther and Schotte. Int. J. Theor. Phys. 25, 1193–1208 (1986)

    Article  Google Scholar 

  18. Gitman, D.M., Shelepin, A.L.: Fields on the Poincaré group: arbitrary spin description and relativistic wave equations. Int. J. Theor. Phys. 40, 603–684 (2001)

    Article  Google Scholar 

  19. Guertin, R.F.: Relativistic Hamiltonian equations for any spin. Ann. Phys. (N.Y.) 88, 504–553 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  20. Gürsey, F.: Relation of charge independence and baryon conservation to Pauli’s transformation. Nuov. Cim. 7, 411–415 (1958)

    Article  Google Scholar 

  21. Hagen, C.R.: New inconsistencies in the quantization of spin-\(\frac{3}{2}\) fields. Phys. Rev. D. 4, 2204–2208 (1971)

    Article  ADS  Google Scholar 

  22. Hepner, W.A.: The inhomogeneous Lorentz group and the conformal group. \(j_{z}\)-conserving coupled states approximation. Nuov. Cim. 26, 351–368 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  23. Ibragimov, NKh: Invariant variational problems and conservation laws (remarks on Noether’s theorem). Theor. Math. Phys. 1, 267–274 (1969)

    Article  MathSciNet  Google Scholar 

  24. Illge, R.: Massive fields of arbitrary spin in curved space-times. Commun. Math. Phys. 158, 433–457 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  25. Illge, R., Schimming, R.: Consistent field equations for higher spin on curved space-time. Ann. Phys. 8, 319–329 (1999)

    Article  MathSciNet  Google Scholar 

  26. Johnson, K., Sudarshan, E.C.G.: Inconsistency of the local field theory of charged spin 3/2 particles. Ann. Phys. (N.Y.) 13, 126–145 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  27. Kaloshin, A.E., Lomov, V.P.: Rarita–Schwinger field and multi-component wave equation. Phys. Part. Nucl. Lett. 8, 517–520 (2011)

    Article  Google Scholar 

  28. Keller, J.: On the electron theory. Adv. Appl. Cliff. Algebras 7 Special, 3–26 (1997)

  29. Kimel, J.D., Nath, L.M.: Quantization of the spin-\(\frac{3}{2}\) field in the presence of interactions. Phys. Rev. D. 6, 2132–2144 (1972)

    Article  ADS  Google Scholar 

  30. Kobayashi, M., Shamaly, A.: Minimal electromagnetic coupling for massive spin-two fields. Phys. Rev. D. 17, 2179–2181 (1978)

    Article  ADS  Google Scholar 

  31. Kraicik, R.A., Nieto, M.M.: Bhabha first-order wave equations. VI. Exact, closed-form, Foldy-Wouthuysen transformations and solutions. Phys. Rev. D. 15, 433–444 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  32. Krivsky, I.Yu., Simulik, V.M.: The Dirac equation and spin 1 representations, a connection with symmetries of the Maxwell equations. Theor. Math. Phys. 90, 265–276 (1992)

  33. Krivsky, I.Yu., Simulik, V.M.: Unitary connection in Maxwell–Dirac isomorphism and the Clifford algebra. Adv. Appl. Cliff. Algebras 6, 249–259 (1996)

  34. Krivsky, I.Yu., Simulik, V.M.: Fermi–Bose duality of the Dirac equation and extended real Clifford–Dirac algebra. Cond. Matt. Phys. 13(1–15), 43101 (2010)

    Article  Google Scholar 

  35. Krivsky, I.Yu., Lompay, R.R., Simulik, V.M.: Symmetries of the complex Dirac–Kähler equation. Theor. Math. Phys. 143, 541–558 (2005)

  36. Krivsky, I.Yu., Zajac, T.M., Shpyrko, S.: Extension of the standard CD algebra in the axiomatic approach for spinor field and Fermi–Bose duality. Adv. Appl. Cliff. Algebras 27, 1431–1458 (2017)

    Article  MathSciNet  Google Scholar 

  37. Loide, R.-K., Ots, I., Saar, R.: Bhabha relativistic wave equations. J. Phys. A. 30, 4005–4017 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. Lounesto, P.: Clifford Algebras and Spinors. 2nd edn, Cambridge (2001)

  39. Mathews, P.M.: Relativistic Schr\(\rm \ddot{o}\)dinger equations for particles of arbitrary spin. Phys. Rev. 143, 978–985 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  40. Napsuciale, M., Kirchbach, M., Rodriguez, S.: Spin 3/2 beyond the Rarita–Schwinger frame-work. Eur. Phys. J. A. 29, 289–306 (2006)

    Article  ADS  Google Scholar 

  41. Nelson, T.J., Good Jr., R.H.: Second-quantization process for particles with any spin and with internal symmetry. Rev. Mod. Phys. 40, 508–522 (1968)

    Article  ADS  Google Scholar 

  42. Pauli, W.: On the conservation of the lepton charge. Nuov. Cim. 6, 204–215 (1957)

    Article  MathSciNet  Google Scholar 

  43. Petras, M.: The SO(3,3) group as a common basis for Dirac’s and Proca’s equations. Czech. J. Phys. 45, 455–464 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  44. Pilling, T.: Symmetry of massive Rarita–Schwinger fields. Int. J. Mod. Phys. A. 20, 2715–2742 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  45. Prabhakaran, J., Seetharaman, M., Mathews, P.M.: Causality of propagation of spin-\(\frac{3}{2}\) fields coupled to spinor and scalar fields. Phys. Rev. D. 12, 3191–3194 (1975)

    Article  ADS  Google Scholar 

  46. Pursey, D.L.: A Foldy–Wouthuysen transformation for particles of arbitrary spin. Nucl. Phys. 53, 174–176 (1964)

    Article  MathSciNet  Google Scholar 

  47. Pursey, D.L.: General theory of covariant particle equations. Ann. Phys. (N.Y.) 32, 157–191 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  48. Rarita, W., Schwinger, J.: On a theory of particles with half-integral spin. Phys. Rev. 60, 61 (1941)

    Article  ADS  Google Scholar 

  49. Red’kov, V.M., Kisel, V.V., Ovsiyuk, E.M.: Particle with Spin 2 and Anomalous Magnetic Moment in External Electromagnetic and Gravitational fields (2011). arXiv:1109.1715v1 [math-ph]

  50. Red’kov, V.M.: Particle with Spin \(S=3/2\) in Riemannian Space-Time (2011). arXiv:1109.3871v1 [math-ph]

  51. Rodrigues Jr., W., de Oliveira, E.: The Many Faces of Maxwell, Dirac and Einstein Equations. 2nd edn, Berlin (2014)

  52. Shirokov, D.S.: Clifford Algebras and Spinors. Moscow (2011) (in Russian)

  53. Shi-Zhong, H., Tu-Nan, R., Ning, W., Zhi-Peng, Z.: Solution to the Rarita–Schwinger equations. Eur. Phys. J. C. 26, 609–623 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  54. Sierra, C.: Classical and quantum aspects of fields with secondary constraints. Phys. Rev. D. 26, 2730–2744 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  55. Simulik, V.M., Krivsky, I.Yu.: Extended Real Clifford–Dirac Agebra and Bosonic Symmetries of the Dirac Equation with Nonzero Mass (2009). arXiv:0908.3106 [math-ph]

  56. Simulik, V.M.: Covariant Local Field Theory Equations Following from the Relativistic Canonical Quantum Mechanics of Arbitrary Spin (2014). arXiv:1409.2766v2 [quant-ph, hep-th]

  57. Simulik, V.M.: General Form of the Covariant Field Equations of Arbitrary Spin and the Relativistic Canonical Quantum Mechanics (2015). arXiv:1509.04630v1 [quant-ph]

  58. Simulik, V.M.: On the new matrix representations of Clifford algebra and SO(8) algebra useful in quantum field theory. Abstracts of the 12th Summer school “Algebra, topology, analysis”, Scientific and educational complex of Dragomanov National Pedagogic Institute, Kolochava, Transcarpathian region, Ukraine, 10–23 July, (2017), 16–18 (in Ukrainian)

  59. Simulik, V.M.: Relativistic canonical quantum mechanics of arbitrary spin. In: Proc. of the 9th Internat. Conference Methods of non-Euclidean geometry in physics and mathematics (BGL-9), pp. 396–409. B.I. Stepanov Institute of Physics, Minsk, Belarus, 27–30 November (2015)

  60. Simulik, V.M.: The electron as a system of classical electromagnetic and scalar fields. In: Simulik, V.M. (ed.) What is the Electron? pp. 109–134. Montreal (2005)

  61. Simulik, V.M.: Derivation of the Dirac and Dirac-like equations of arbitrary spin from the corresponding relativistic canonical quantum mechanics. Ukr. J. Phys. 60, 985–1006 (2015)

    Article  Google Scholar 

  62. Simulik, V.M.: Link between the relativistic canonical quantum mechanics of arbitrary spin and the corresponding field theory. J. Phys: Conf. Ser. 670(1–16), 012047 (2016)

    Google Scholar 

  63. Simulik, V.M.: Relativistic wave equations of arbitrary spin in quantum mechanics and field theory, example spin \(\text{ s }=2\). J. Phys: Conf. Ser. 804(1–10), 012040 (2017)

    Google Scholar 

  64. Simulik, V.M.: On the old and new matrix representations of the Clifford algebra for the Dirac equation and quantum field theory. World Sci. News 87, 238–245 (2017)

    Google Scholar 

  65. Simulik, V.M., Krivsky, I.Yu.: Clifford algebra in classical electrodynamical hydrogen atom model. Adv. Appl. Cliff. Algebras 7, 25–34 (1997)

    Article  MathSciNet  Google Scholar 

  66. Simulik, V.M., Krivsky, I.Yu.: Bosonic symmetries of the massless Dirac equation. Adv. Appl. Cliff. Algebras 8, 69–82 (1998)

    Article  MathSciNet  Google Scholar 

  67. Simulik, V.M., Krivsky, I.Yu.: Slightly generalized Maxwell classical electrodynamics can be applied to inneratomic phenomena. Ann. Fond. L. de Broglie 27, 303–328 (2002)

  68. Simulik, V.M., Krivsky, I.Yu.: Relationship between the Maxwell and Dirac equations: symmetries, quantization, models of atom. Rep. Math. Phys. 50, 315–328 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  69. Simulik, V.M., Krivsky, I.Yu.: Classical electrodynamical aspect of the Dirac equation. Electromagn. Phenom. 3, 103–114 (2003)

  70. Simulik, V.M., Krivsky, I.Yu.: On the extended real Clifford–Dirac algebra and new physically meaningful symmetries of the Dirac equation with nonzero mass. Rep. Natl. Acad. Sci. Ukraine 5, 82–88 (2010). (in Ukrainian)

  71. Simulik, V.M., Krivsky, I.Yu.: Bosonic symmetries of the Dirac equation. Phys. Lett. A. 375, 2479–2483 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  72. Simulik, V.M., Krivsky, I.Yu.: Quantum-mechanical description of the fermionic doublet and its link with the Dirac equation. Ukr. J. Phys. 58, 1192–1203 (2013)

    Article  Google Scholar 

  73. Simulik, V.M., Krivsky, I.Yu.: Link between the relativistic canonical quantum mechanics and the Dirac equation. Univ. J. Phys. Appl. 2, 115–128 (2014)

  74. Simulik, V.M., Krivsky, I.Yu., Lamer, I.L.: Some statistical aspects of the spinor field Fermi–Bose duality. Cond. Matt. Phys. 15(1–10), 43101 (2012)

    Article  Google Scholar 

  75. Simulik, V.M., Krivsky, I.Yu., Lamer, I.L.: Application of the generalized Clifford–Dirac algebra to the proof of the Dirac equation Fermi–Bose duality. TWMS J. App. Eng. Math. 3, 46–61 (2013)

  76. Simulik, V.M., Krivsky, I.Yu., Lamer, I.L.: Bosonic symmetries, solutions and conservation laws for the Dirac equation with nonzero mass. Ukr. J. Phys. 58, 523–533 (2013)

    Article  Google Scholar 

  77. Singh, L.P.S.: Noncausal propagation of classical Rarita–Schwinger waves. Phys. Rev. D. 7, 1256–1258 (1973)

    Article  ADS  Google Scholar 

  78. Velo, G., Zwanziger, D.: Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential. Phys. Rev. 186, 1337–1341 (1969)

    Article  ADS  Google Scholar 

  79. Velo, G., Zwanziger, D.: Noncausality and other defects of interaction Lagrangians for particles with spin one and higher. Phys. Rev. 188, 2218–2222 (1969)

    Article  ADS  Google Scholar 

  80. Velo, G., Zwanziger, D.: Fallacy of perturbative methods for higher-spin equations. Lett. Nuov. Cim. 15, 39–40 (1976)

    Article  Google Scholar 

  81. Weaver, D.L., Hammer, C.L., Good Jr., R.H.: Description of a particle with arbitrary mass and spin. Phys. Rev. 135, B241–B248 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  82. Wybourne, B.: Classical Groups for Physicists. New York (1974)

  83. Zecca, A.: Massive field equations of arbitrary spin in Schwarzschild geometry: separation induced by spin-3/2 case. Int. J. Theor. Phys. 45, 2241–2247 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is much grateful for Profs. J. Keller and W. Rodrigues Jr. for the support of our investigations, see, e.g., [28, 51]. I must thank the unknown referee for useful remark, which helped to overcome the misleading notation in last column of the Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Simulik.

Additional information

Communicated by Jayme Vaz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simulik, V.M. On the Gamma Matrix Representations of SO(8) and Clifford Algebras. Adv. Appl. Clifford Algebras 28, 93 (2018). https://doi.org/10.1007/s00006-018-0906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00006-018-0906-3

Mathematics Subject Classification

Keywords

Navigation