Skip to main content
Log in

A New Generalization of the Steiner Formula and the Holditch Theorem

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this study, we first obtained the Steiner area formula in the generalized complex plane. Then, with the aid of this formula, we determined a new approach for the Holditch theorem giving the relationship between the areas formed by points in the generalized complex plane (or p-complex plane). Finally, according to the special values of p = −1, 0, 1 we examined the cases of the Steiner Formula and Holditch Theorem. In this way, for \({p \in \mathbb{R}}\) we generalized the Steiner Formula and Holditch theorem consisting the Euclidean \({\left({p = -1}\right)}\), Galilean \({\left({p = 0}\right)}\) and Lorentzian \({\left({p = 1}\right)}\) cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaschke W.H., Müller R.: Ebene Kinematik. Verlag Oldenbourg, München (1956)

    MATH  Google Scholar 

  2. Broman A.: A fresh look at a long-forgotten theorem. Math. Mag. 54(3), 99–108 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gürses, N.B., Yüce, S.: One-parameter planar motions in generalized complex number plane \({\mathbb{C}_j}\). Adv. Appl. Clifford Algebra (2015). doi:10.1007/s00006-015-0530-4

  4. Hacisalihoglu, H.H.: On the geometry of motion of Lorentzian plane. In: Proc. of Assiut First International Conference of Mathematics and Statistics, Part I, pp. 87–107. University of Assiut, Assiut, Egypt (1990)

  5. Harkin A.A., Harkin J.B.: Geometry of generalized complex numbers. Math. Mag. 77(2), 118–129 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Hering L.: Sätze vom Holditch-typ für ebene kurven. Elem. Math. 38, 39–49 (1983)

    MathSciNet  MATH  Google Scholar 

  7. Holditch H.: Geometrical theorem. QJ Pure Appl. Math. 2, 858 (1858)

    Google Scholar 

  8. Koru, G.: Manifolds and the Holditch theorem. Phd thesis, Ankara University, Ankara, Turkey (2000)

  9. Kuruoǧlu N., Yüce S.: The generalized Holditch theorem for the homothetic motions on the planar kinematics. Czechoslov. Math. J. 54(129), 337–340 (2004)

    Article  Google Scholar 

  10. Müller H.R.: Verallgemeinerung einer Formel von Steiner. Abh. d. Brschw. Wiss. Ges. Bd. 29, 107–113 (1978)

    MATH  Google Scholar 

  11. Parapatits L., Schuster F.E.: The Steiner formula for Minkowski valuations. Adv. Math. 230, 978–994 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Potmann H.: Holditch–Sicheln. Arc. Math. 44, 373–378 (1985)

    Article  Google Scholar 

  13. Potmann H.: Zum Satz von Holditch in der euklidischen Ebene. Elem. Math. 41, 1–6 (1986)

    MathSciNet  Google Scholar 

  14. Sachs, H.: Ebene Isotrope Geometrie. Fiedr. Vieweg-Sohn (1987)

  15. Spivak M.: Calculus on Manifolds: a Modern Approach to Classical Theorems of Advanced Calculus. WA Benjamin, New York (1965)

    MATH  Google Scholar 

  16. Steiner, J.: Über parallele Flächen, Monatsber. Preuss. Akad. Wiss. pp. 114–118 (1840), [Ges. Werke, Vol II (Georg Reimer, Berlin, 1882) 245–308]

  17. Steiner, J.: Gesammelte Werke I. Georg Reimer, Berlin (1881)

  18. Tutar A., Kuruoǧlu N.: The Steiner formula and the Holditch theorem for the homothetic motions on planar kinematics. Mech. Mach. Theory 34, 1–6 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yaglom I.M.: Complex Numbers in Geometry. Academic Press, New York (1968)

    Google Scholar 

  20. Yaglom I.M.: A Simple non-Euclidean Geometry and its Physical Basis. Springer, New-York (1979)

    MATH  Google Scholar 

  21. Yüce S., Kuruoǧlu N.: Holditch-type theorems under the closed planar homothetic motions. Ital. J. Pure Appl. Math. 21, 105–108 (2007)

    Google Scholar 

  22. Yüce S., Kuruoǧlu N.: Steiner formula and Holditch-type theorems for homothetic Lorentzian Motions. Iran. J. Sci. Technol. Trans. A Sci. 31(A2), 207–212 (2007)

    MathSciNet  Google Scholar 

  23. Yüce S., Kuruoǧlu N.: Holditch theorem and Steiner formula for the planar hyperbolic motions. Adv. Appl. Clifford Algebra. 20, 195–200 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Tosun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erişir, T., Güngör, M.A. & Tosun, M. A New Generalization of the Steiner Formula and the Holditch Theorem. Adv. Appl. Clifford Algebras 26, 97–113 (2016). https://doi.org/10.1007/s00006-015-0559-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-015-0559-4

Mathematics Subject Classification

Keywords

Navigation