Skip to main content

Advertisement

Log in

The Potential Role of Krüppel-Like Zinc-Finger Protein Glis3 in Genetic Diseases and Cancers

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Gli-similar 3 (Glis3) belongs to a Glis subfamily of Krüppel-like zinc-finger transcription factors characterized to regulate a set of downstream targets essential for cellular functions, including pancreatic development, β-cell maturation and maintenance, and insulin production. Examination of the DNA-binding domain of Glis3 reveals that this domain contains a repeated cysteine 2/histidine 2 (Cys2/His2) zinc-finger motif in the central region where the recognized DNA sequence binds. The loss of the production of pancreatic hormones, such as insulin 1 and 2, is linked to the down-regulation of β cells-related genes and promotes the apoptotic death of β cells found in mutant Glis3. Although accumulating studies converge on the Glis3 functioning in β cells, recently, there have been developments in the field of Glis3 using knockdown/mutant mice to better understand the role of Glis3 in diseases. The Glis3 mutant mice have been characterized for their propensity to develop congenital hypothyroidism, polycystic kidney disease, and some types of cancer. In this review, we attempt to comprehensively summarize the knowledge of Glis3, including its structure and general function in cells. We also collected and organized the academic achievements related to the possible mechanisms of Glis3-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barthson J, Germano CM, Moore F et al (2011) Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation. J Biol Chem 286:39632–39643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beak JY, Kang HS, Kim YS et al (2008) Functional analysis of the zinc finger and activation domains of Glis3 and mutant Glis3(NDH1). Nucleic Acids Res 36:1690–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez CM, Goodyer WR, Kim SK (2012) Deconstructing pancreas developmental biology. Cold Spring Harb Perspect Biol 4:a012401

    Article  PubMed  PubMed Central  Google Scholar 

  • Brayer KJ, Segal DJ (2008) Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys 50:111–131

    Article  CAS  PubMed  Google Scholar 

  • Cnop M, Welsh N, Jonas JC et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107

    Article  CAS  PubMed  Google Scholar 

  • Cooper LA, Gutman DA, Long Q et al (2010) The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas. PLoS One 5:e12548

    Article  PubMed  PubMed Central  Google Scholar 

  • Dimitri P, Warner JT, Minton JA et al (2011) Novel GLIS3 mutations demonstrate an extended multisystem phenotype. Eur J Endocrinol 164:437–443

    Article  CAS  PubMed  Google Scholar 

  • Fedeles S, Gallagher AR (2013) Cell polarity and cystic kidney disease. Pediatr Nephrol 28:1161–1172

    Article  PubMed  Google Scholar 

  • Furlong EE, Andersen EC, Null B et al (2001) Patterns of gene expression during Drosophila mesoderm development. Science 293:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Halvorson CR, Bremmer MS, Jacobs SC (2010) Polycystic kidney disease: inheritance, pathophysiology, prognosis, and treatment. Int J Nephrol Renovasc Dis 3:69–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Happe H, de Heer E, Peters DJ (2011) Polycystic kidney disease: the complexity of planar cell polarity and signaling during tissue regeneration and cyst formation. Biochim Biophys Acta 1812:1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto H, Miyamoto R, Watanabe N et al (2009) Polycystic kidney disease in the medaka (Oryzias latipes) pc mutant caused by a mutation in the Gli-Similar3 (glis3) gene. PLoS One 4:e6299

    Article  PubMed  PubMed Central  Google Scholar 

  • James MA, Wen W, Wang Y et al (2012) Functional characterization of CLPTM1L as a lung cancer risk candidate gene in the 5p15.33 locus. PLoS One 7:e36116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang CC, Lai F, Tay KH, Croft A et al (2010) Apoptosis of human melanoma cells induced by inhibition of B-RAFV600E involves preferential splicing of bimS. Cell Death Dis 1:e69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jie L, Fan W, Weiqi D et al (2013) The hippo-yes association protein pathway in liver cancer. Gastroenterol Res Pract 2013:187070

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaczynski J, Cook T, Urrutia R (2003) Sp1- and Kruppel-like transcription factors. Genome Biol 4:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang HS, Beak JY, Kim YS et al (2009a) Glis3 is associated with primary cilia and Wwtr1/TAZ and implicated in polycystic kidney disease. Mol Cell Biol 29:2556–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HS, Beak JY, Kim YS et al (2009b) Transcription factor Glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol 29:6366–6379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang HS, ZeRuth G, Lichti-Kaiser K et al (2010) Gli-similar (Glis) Kruppel-like zinc finger proteins: insights into their physiological functions and critical roles in neonatal diabetes and cystic renal disease. Histol Histopathol 25:1481–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kataoka K, Han SI, Shioda S et al (2002) MafA is a glucose-regulated and pancreatic beta-cell-specific transcriptional activator for the insulin gene. J Biol Chem 277:49903–49910

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Lewandoski M, Perantoni AO et al (2002) Identification of Glis1, a novel Gli-related, Kruppel-like zinc finger protein containing transactivation and repressor functions. J Biol Chem 277:30901–30913

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Nakanishi G, Lewandoski M et al (2003) GLIS3, a novel member of the GLIS subfamily of Kruppel-like zinc finger proteins with repressor and activation functions. Nucleic Acids Res 31:5513–5525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Kang HS, Herbert R et al (2008) Kruppel-like zinc finger protein Glis2 is essential for the maintenance of normal renal functions. Mol Cell Biol 28:2358–2367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacevic Z, Chikhani S, Lui GY et al (2013) The iron-regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the PI3K and Ras signaling pathways. Antioxid Redox Signal 18:874–887

    Article  CAS  PubMed  Google Scholar 

  • Lichti-Kaiser K, ZeRuth G, Kang HS et al (2012) Gli-similar proteins: their mechanisms of action, physiological functions, and roles in disease. Vitam Horm 88:141–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichti-Kaiser K, ZeRuth G, Jetten AM (2014) Transcription factor Gli-similar 3 (Glis3): implications for the development of congenital hypothyroidism. J Endocrinol Diabetes Obes 2:1024

    PubMed  PubMed Central  Google Scholar 

  • Lukashova-v Zangen I et al (2007) Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol 113:325–337

    Article  PubMed  Google Scholar 

  • Maruyama Y, Ono M, Kawahara A et al (2006) Tumor growth suppression in pancreatic cancer by a putative metastasis suppressor gene Cap43/NDRG1/Drg-1 through modulation of angiogenesis. Cancer Res 66:6233–6242

    Article  CAS  PubMed  Google Scholar 

  • Mebis L, van den Berghe G (2009) The hypothalamus-pituitary-thyroid axis in critical illness. Neth J Med 67:332–340

    CAS  PubMed  Google Scholar 

  • Nelson SB, Schaffer AE, Sander M (2007) The transcription factors Nkx6.1 and Nkx6.2 possess equivalent activities in promoting beta-cell fate specification in Pdx1+ pancreatic progenitor cells. Development 134:2491–2500

    Article  CAS  PubMed  Google Scholar 

  • Nogueira TC, Paula FM, Villate O et al (2013) GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet 9:e1003532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connor L, Strasser A, O’Reilly LA et al (1998) Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J 17:384–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson R, Fleetwood J, Eaton S et al (2008) Kruppel-like transcription factors: a functional family. Int J Biochem Cell Biol 40:1996–2001

    Article  CAS  PubMed  Google Scholar 

  • Porcu E, Medici M, Pistis G et al (2013) A meta-analysis of thyroid-related traits reveals novel loci and gender-specific differences in the regulation of thyroid function. PLoS Genet 9:e1003266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi MV, LaFranchi SH (2010) Congenital hypothyroidism. Orphanet J Rare Dis 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwitzgebel VM, Scheel DW, Conners JR et al (2000) Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development 127:3533–3542

    CAS  PubMed  Google Scholar 

  • Senee V, Chelala C, Duchatelet S et al (2006) Mutations in GLIS3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38:682–687

    Article  CAS  PubMed  Google Scholar 

  • Uhlenhaut NH, Treier M (2008) Transcriptional regulators in kidney disease: gatekeepers of renal homeostasis. Trends Genet 24:361–371

    Article  CAS  PubMed  Google Scholar 

  • Vasanth S, ZeRuth G, Kang HS et al (2011) Identification of nuclear localization, DNA binding, and transactivating mechanisms of Kruppel-like zinc finger protein Gli-similar 2 (Glis2). J Biol Chem 286:4749–4759

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Mena O, Medina-Martinez I, Juárez-Torres E et al (2012) Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines. PLoS One 7:e32667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, Luo F, Wert SE et al (2008) Kruppel-like factor 5 is required for perinatal lung morphogenesis and function. Development 135:2563–2572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Hecksher-Sorensen J et al (2008) Myt1 and Ngn3 form a feed-forward expression loop to promote endocrine islet cell differentiation. Dev Biol 317:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Hiramatsu K, Miyamoto R et al (2009) A murine model of neonatal diabetes mellitus in Glis3-deficient mice. FEBS Lett 583:2108–2113

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Hazard FK, Zmoos AF et al (2015) Genomic analysis of fibrolamellar hepatocellular carcinoma. Hum Mol Genet 24:50–63

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K, Okamoto A, Isonishi S et al (2001) A novel gene, CRR9, which was up-regulated in CDDP-resistant ovarian tumor cell line, was associated with apoptosis. Biochem Biophys Res Commun 280:1148–1154

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chang BH, Samson SL et al (2009) The Kruppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 37:2529–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Chang BH, Yechoor V et al (2011) The Kruppel-like zinc finger protein GLIS3 transactivates neurogenin 3 for proper fetal pancreatic islet differentiation in mice. Diabetologia 54:2595–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusenko MV, Kovacs G (2009) Identifying CD82 (KAI1) as a marker for human chromophobe renal cell carcinoma. Histopathology 55:687–695

    Article  PubMed  Google Scholar 

  • ZeRuth GT, Yang XP, Jetten AM (2011) Modulation of the transactivation function and stability of Kruppel-like zinc finger protein Gli-similar 3 (Glis3) by suppressor of fused. J Biol Chem 286:22077–22089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ZeRuth GT, Takeda Y, Jetten AM (2013) The Kruppel-like protein Gli-similar 3 (Glis3) functions as a key regulator of insulin transcription. Mol Endocrinol 27:1692–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Jetten AM (2001) Genomic structure of the gene encoding the human GLI-related, Kruppel-like zinc finger protein GLIS2. Gene 280:49–57

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Nakanishi G, Kurebayashi S et al (2002) Characterization of Glis2, a novel gene encoding a Gli-related, Kruppel-like transcription factor with transactivation and repressor functions. Roles in kidney development and neurogenesis. J Biol Chem 277:10139–10149

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by Grant MOST105-2311-B-037-001 from the Ministry of Science and Technology (MOST), Taiwan; Grant KMU-TP104A3 and KMU-TP105A7 from Kaohsiung Medical University, Taiwan; Grant NSYSU-KMU104-P031, NSYSU-KMU105-P017 and KMU106-P019 from NSYSU-KMU Joint Research Project; and grant Aim for the Top Universities Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Chih Chiu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, CK., Tang, CJ., Chou, HL. et al. The Potential Role of Krüppel-Like Zinc-Finger Protein Glis3 in Genetic Diseases and Cancers. Arch. Immunol. Ther. Exp. 65, 381–389 (2017). https://doi.org/10.1007/s00005-017-0470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-017-0470-x

Keywords

Navigation