Skip to main content

Advertisement

Log in

Insights into Myeloid-Derived Suppressor Cells in Inflammatory Diseases

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells involved in immune regulation. This population subdivides into granulocytic MDSCs and monocytic MDSCs, which regulate immune responses via the production of various molecules including reactive oxygen species, nitric oxide, arginase-1, interleukin-10, and transforming growth factor-β. Most studies of MDSCs focused on their role in tumors. MDSCs protect tumor cells from immune responses, and thus the frequency of MDSCs associates with poor prognosis. Many recent studies reported an important role for MDSCs in inflammatory diseases via the regulation of immune cells. In addition, the utilization of MDSCs by infectious pathogens suggests an immune evasion mechanism. Thus, MDSCs are important immune regulators in inflammatory diseases, as well as in tumors. This review focuses on the role of MDSCs in the regulation of inflammation in non-tumor settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Anthony DD et al (2011) Lower peripheral blood CD14+ monocyte frequency and higher CD34+ progenitor cell frequency are associated with HBV vaccine induced response in HIV infected individuals. Vaccine 29:3558–3563

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arakawa Y et al (2014) Cotransplantation with myeloid-derived suppressor cells protects cell transplants: a crucial role of inducible nitric oxide synthase. Transplantation 97:740–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arora M et al (2010) TLR4/MyD88-induced CD11b+Gr-1 int F4/80+ non-migratory myeloid cells suppress Th2 effector function in the lung. Mucosal Immunol 3:578–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arora M et al (2011) LPS-induced CD11b+Gr1(int)F4/80+ regulatory myeloid cells suppress allergen-induced airway inflammation. Int Immunopharmacol 11:827–832

    CAS  PubMed  Google Scholar 

  • Baniyash M (2004) TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol 4:675–687

    CAS  PubMed  Google Scholar 

  • Barnes PJ (2001) Th2 cytokines and asthma: an introduction. Respir Res 2:64–65

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhushan V, Collins RH Jr (2003) Chronic graft-vs-host disease. JAMA 290:2599–2603

    CAS  PubMed  Google Scholar 

  • Bingisser RM et al (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 160:5729–5734

    CAS  PubMed  Google Scholar 

  • Birrell MA et al (2005) Resveratrol, an extract of red wine, inhibits lipopolysaccharide induced airway neutrophilia and inflammatory mediators through an NF-kappaB-independent mechanism. FASEB J 19:840–841

    CAS  PubMed  Google Scholar 

  • Bowen JL, Olson JK (2009) Innate immune CD11b+Gr-1+ cells, suppressor cells, affect the immune response during Theiler’s virus-induced demyelinating disease. J Immunol 183:6971–6980

    CAS  PubMed  Google Scholar 

  • Braudeau C et al (2004) Induction of long-term cardiac allograft survival by heme oxygenase-1 gene transfer. Gene Ther 11:701–710

    CAS  PubMed  Google Scholar 

  • Brito C et al (1999) Peroxynitrite inhibits T lymphocyte activation and proliferation by promoting impairment of tyrosine phosphorylation and peroxynitrite-driven apoptotic death. J Immunol 162:3356–3366

    CAS  PubMed  Google Scholar 

  • Bunt SK et al (2009) Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol 85:996–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burdette D et al (2012) Hepatitis C virus activates interleukin-1beta via caspase-1-inflammasome complex. J Gen Virol 93(Pt 2):235–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cai W et al (2013) Clinical significance and functional studies of myeloid-derived suppressor cells in chronic hepatitis C patients. J Clin Immunol 33:798–808

    CAS  PubMed  Google Scholar 

  • Charles JF et al (2012) Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J Clin Invest 122:4592–4605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chauveau C et al (2002) Gene transfer of heme oxygenase-1 and carbon monoxide delivery inhibit chronic rejection. Am J Transplant 2:581–592

    CAS  PubMed  Google Scholar 

  • Chen S et al (2011) Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol 166:134–142

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng P et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christ M et al (1994) Immune dysregulation in TGF-beta 1-deficient mice. J Immunol 153:1936–1946

    CAS  PubMed  Google Scholar 

  • Corzo CA et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 182:5693–5701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cripps JG, Gorham JD (2011) MDSC in autoimmunity. Int Immunopharmacol 11:789–793

    CAS  Google Scholar 

  • Cripps JG et al (2010) Type 1 T helper cells induce the accumulation of myeloid-derived suppressor cells in the inflamed Tgfb1 knockout mouse liver. Hepatology 52:1350–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Croxford AL et al (2011) Mouse models for multiple sclerosis: historical facts and future implications. Biochim Biophys Acta 1812:177–183

    CAS  PubMed  Google Scholar 

  • De Santo C et al (2008) Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 118:4036–4048

    PubMed Central  PubMed  Google Scholar 

  • De Wilde V et al (2009) Endotoxin-induced myeloid-derived suppressor cells inhibit alloimmune responses via heme oxygenase-1. Am J Transplant 9:2034–2047

    PubMed  Google Scholar 

  • Delano MJ et al (2007) MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463–1474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deshane J et al (2011) Free radical-producing myeloid-derived regulatory cells: potent activators and suppressors of lung inflammation and airway hyperresponsiveness. Mucosal Immunol 4:503–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dietlin TA et al (2007) Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion. J Leukoc Biol 81:1205–1212

    CAS  PubMed  Google Scholar 

  • Dilek N et al (2012) Control of transplant tolerance and intragraft regulatory T cell localization by myeloid-derived suppressor cells and CCL5. J Immunol 188:4209–4216

    CAS  PubMed  Google Scholar 

  • Djukanovic R et al (1990) Mucosal inflammation in asthma. Am Rev Respir Dis 142:434–457

    CAS  PubMed  Google Scholar 

  • Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348

    CAS  PubMed  Google Scholar 

  • Drujont L et al (2014) Evaluation of the therapeutic potential of bone marrow-derived myeloid suppressor cell (MDSC) adoptive transfer in mouse models of autoimmunity and allograft rejection. PLoS One 9:e100013

    PubMed Central  PubMed  Google Scholar 

  • Dugast AS et al (2008) Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. J Immunol 180:7898–7906

    CAS  PubMed  Google Scholar 

  • Egelston C et al (2012) Suppression of dendritic cell maturation and T cell proliferation by synovial fluid myeloid cells from mice with autoimmune arthritis. Arthritis Rheum 64:3179–3188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ekmekcioglu S et al (2000) Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 6:4768–4775

    CAS  PubMed  Google Scholar 

  • Elkabets M et al (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40:3347–3357

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elmali N et al (2005) Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm Res 54:158–162

    CAS  PubMed  Google Scholar 

  • Enioutina EY et al (2011) A role for immature myeloid cells in immune senescence. J Immunol 186:697–707

    CAS  PubMed  Google Scholar 

  • Fagundes CT et al (2007) ST2, an IL-1R family member, attenuates inflammation and lethality after intestinal ischemia and reperfusion. J Leukoc Biol 81:492–499

    CAS  PubMed  Google Scholar 

  • Farrell AJ et al (1992) Increased concentrations of nitrite in synovial fluid and serum samples suggest increased nitric oxide synthesis in rheumatic diseases. Ann Rheum Dis 51:1219–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu B et al (2014) Subsets of human natural killer cells and their regulatory effects. Immunology 141:483–489

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii W et al (2013) Myeloid-derived suppressor cells play crucial roles in the regulation of mouse collagen-induced arthritis. J Immunol 191:1073–1081

    CAS  PubMed  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gabrilovich DI et al (2001) Mechanism of immune dysfunction in cancer mediated by immature Gr-1 + myeloid cells. J Immunol 166:5398–5406

    CAS  PubMed  Google Scholar 

  • Gantt S et al (2014) The role of myeloid-derived suppressor cells in immune ontogeny. Front Immunol 5:387

    PubMed Central  PubMed  Google Scholar 

  • Garg A, Spector SA (2014) HIV type 1 gp120-induced expansion of myeloid derived suppressor cells is dependent on interleukin 6 and suppresses immunity. J Infect Dis 209:441–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaupp S et al (2003) Experimental autoimmune encephalomyelitis (EAE) in CCR2(−/−) mice: susceptibility in multiple strains. Am J Pathol 162:139–150

    PubMed Central  PubMed  Google Scholar 

  • Gervassi A et al (2014) Myeloid derived suppressor cells are present at high frequency in neonates and suppress in vitro T cell responses. PLoS One 9:e107816

    PubMed Central  PubMed  Google Scholar 

  • Goh C et al (2013) Myeloid-derived suppressor cells: the dark knight or the joker in viral infections? Immunol Rev 255:210–221

    PubMed Central  PubMed  Google Scholar 

  • Goker H et al (2001) Acute graft-vs-host disease: pathobiology and management. Exp Hematol 29:259–277

    CAS  PubMed  Google Scholar 

  • Gorham JD et al (2001) Genetic regulation of autoimmune disease: bALB/c background TGF-beta 1-deficient mice develop necroinflammatory IFN-gamma-dependent hepatitis. J Immunol 166:6413–6422

    CAS  PubMed  Google Scholar 

  • Greifenberg V et al (2009) Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol 39:2865–2876

    CAS  PubMed  Google Scholar 

  • Guan Q et al (2013) The role and potential therapeutic application of myeloid-derived suppressor cells in TNBS-induced colitis. J Leukoc Biol 94:803–811

    CAS  PubMed  Google Scholar 

  • Haile LA et al (2008) Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 135:871–881 (881 e871–875)

    CAS  PubMed  Google Scholar 

  • Haile LA et al (2010) CD49d is a new marker for distinct myeloid-derived suppressor cell subpopulations in mice. J Immunol 185:203–210

    CAS  PubMed  Google Scholar 

  • Hamid Q, Tulic M (2009) Immunobiology of asthma. Ann Rev Physiol 71:489–507

    CAS  Google Scholar 

  • Harari O, Liao JK (2004) Inhibition of MHC II gene transcription by nitric oxide and antioxidants. Curr Pharm Des 10:893–898

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haspot F et al (2005) Anti-CD28 antibody-induced kidney allograft tolerance related to tryptophan degradation and TCR class II B7 regulatory cells. Am J Transplant 5:2339–2348

    CAS  PubMed  Google Scholar 

  • Hoechst B et al (2009) Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 50:799–807

    CAS  PubMed  Google Scholar 

  • Hsieh CC et al (2013) The role of complement component 3 (C3) in differentiation of myeloid-derived suppressor cells. Blood 121:1760–1768

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang B et al (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    CAS  PubMed  Google Scholar 

  • Iwata Y et al (2010) Involvement of CD11b+ GR-1 low cells in autoimmune disorder in MRL-Fas lpr mouse. Clin Exp Nephrol 14:411–417

    PubMed  Google Scholar 

  • Jiang J et al (2014) Phenotypes, accumulation, and functions of myeloid-derived suppressor cells and associated treatment strategies in cancer patients. Hum Immunol 75:1128–1137

    CAS  PubMed  Google Scholar 

  • Jiao Z et al (2013) Increased circulating myeloid-derived suppressor cells correlated negatively with Th17 cells in patients with rheumatoid arthritis. Scand J Rheumatol 42:85–90

    CAS  PubMed  Google Scholar 

  • Kanazawa S et al (2000) Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 12:61–70

    CAS  PubMed  Google Scholar 

  • Katoh H et al (2013) CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 24:631–644

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kerr EC et al (2008) Analysis of retinal cellular infiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cell populations. J Autoimmun 31:354–361

    CAS  PubMed  Google Scholar 

  • Khaled YS et al (2013) Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunol Cell Biol 91:493–502

    CAS  PubMed  Google Scholar 

  • Kim YJ et al (2011) Phagocytosis, a potential mechanism for myeloid-derived suppressor cell regulation of CD8+ T cell function mediated through programmed cell death-1 and programmed cell death-1 ligand interaction. J Immunol 187:2291–2301

    CAS  PubMed Central  PubMed  Google Scholar 

  • King IL et al (2009) Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113:3190–3197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinnula VL et al (2004) Ultrastructural and chromosomal studies on manganese superoxide dismutase in malignant mesothelioma. Am J Respir Cell Mol Biol 31:147–153

    CAS  PubMed  Google Scholar 

  • Ko HJ et al (2009) Immunosuppressive myeloid-derived suppressor cells can be converted into immunogenic APCs with the help of activated NKT cells: an alternative cell-based antitumor vaccine. J Immunol 182:1818–1828

    CAS  PubMed  Google Scholar 

  • Kobayashi M et al (2008) Gr-1(+)CD11b(+) cells as an accelerator of sepsis stemming from Pseudomonas aeruginosa wound infection in thermally injured mice. J Leukoc Biol 83:1354–1362

    CAS  PubMed  Google Scholar 

  • Kong X et al (2014) gammadeltaT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 193:1645–1653

    CAS  PubMed  Google Scholar 

  • Krawitt EL (2006) Autoimmune hepatitis. N Engl J Med 354:54–66

    CAS  PubMed  Google Scholar 

  • Kropf P et al (2007) Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur J Immunol 37:935–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurko J et al (2014) Identification of myeloid-derived suppressor cells in the synovial fluid of patients with rheumatoid arthritis: a pilot study. BMC Musculoskelet Disord 15:281

    PubMed Central  PubMed  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186–196

    CAS  PubMed  Google Scholar 

  • Kusmartsev S et al (2005) Tumor-associated CD8+ T cell tolerance induced by bone marrow-derived immature myeloid cells. J Immunol 175:4583–4592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lapinski TW (2001) The levels of IL-1beta, IL-4 and IL-6 in the serum and the liver tissue of chronic HCV-infected patients. Arch Immunol Ther Exp 49:311–316

    CAS  Google Scholar 

  • Le Blanc K et al (2013) Myeloid-derived suppressor cells in allogeneic hematopoietic stem cell transplantation: a double-edged sword? Oncoimmunology 2:e25009

    PubMed Central  PubMed  Google Scholar 

  • Lechler R et al (2001) Dendritic cells in transplantation—friend or foe? Immunity 14:357–368

    CAS  PubMed  Google Scholar 

  • Lee CH et al (2001) Hepatitis C virus core protein inhibits interleukin 12 and nitric oxide production from activated macrophages. Virology 279:271–279

    CAS  PubMed  Google Scholar 

  • LeMaoult J et al (2004) HLA-G1-expressing antigen-presenting cells induce immunosuppressive CD4+ T cells. Proc Natl Acad Sci USA 101:7064–7069

    CAS  PubMed Central  PubMed  Google Scholar 

  • LeMaoult J et al (2005) HLA-G up-regulates ILT2, ILT3, ILT4, and KIR2DL4 in antigen presenting cells, NK cells, and T cells. FASEB J 19:662–664

    CAS  PubMed  Google Scholar 

  • Li H et al (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249

    CAS  PubMed  Google Scholar 

  • Liang S et al (2008) Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6–STAT3 signaling pathway. Proc Natl Acad Sci USA 105:8357–8362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C et al (2007) Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood 109:4336–4342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C et al (2011) Poly(I:C) induce bone marrow precursor cells into myeloid-derived suppressor cells. Mol Cell Biochem 358:317–323

    CAS  PubMed  Google Scholar 

  • Lu T et al (2011) Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J Clin Invest 121:4015–4029

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luan Y et al (2013) Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion. Am J Transplant 13:3123–3131

    CAS  PubMed  Google Scholar 

  • Lv M et al (2015) Monocytic and promyelocytic myeloid-derived suppressor cells may contribute to G-CSF-induced immune tolerance in haplo-identical allogeneic hematopoietic stem cell transplantation. Am J Hematol 90:E9–E16

    CAS  PubMed  Google Scholar 

  • Macatangay BJ et al (2012) MDSC: a new player in HIV immunopathogenesis. AIDS 26:1567–1569

    PubMed Central  PubMed  Google Scholar 

  • Marhaba R et al (2007) The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 179:5071–5081

    CAS  PubMed  Google Scholar 

  • Markowitz J et al (2013) Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat 140:13–21

    CAS  PubMed Central  PubMed  Google Scholar 

  • McIntosh KR, Drachman DB (1999) Induction of apoptosis in activated T cell blasts by suppressive macrophages: a possible immunotherapeutic approach for treatment of autoimmune disease. Cell Immunol 193:24–35

    CAS  PubMed  Google Scholar 

  • Mencacci A et al (2002) CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunology 169:3180–3190

    CAS  Google Scholar 

  • Mildner A et al (2009) CCR2+ Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132:2487–2500

    PubMed  Google Scholar 

  • Modolell M et al (1995) Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 25:1101–1104

    CAS  PubMed  Google Scholar 

  • Movahedi K et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111:4233–4244

    CAS  PubMed  Google Scholar 

  • Nagaraj S et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagaraj S et al (2010) Mechanism of T cell tolerance induced by myeloid-derived suppressor cells. J Immunol 184:3106–3116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura Y et al (2006) Nitric oxide in breast cancer: induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis. Clin Cancer Res 12:1201–1207

    CAS  PubMed  Google Scholar 

  • Nausch N et al (2008) Mononuclear myeloid-derived “suppressor” cells express RAE-1 and activate natural killer cells. Blood 112:4080–4089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nguyen H et al (2006) Hepatitis C virus core protein induces expression of genes regulating immune evasion and anti-apoptosis in hepatocytes. Virology 354:58–68

    CAS  PubMed  Google Scholar 

  • Noel JG et al (2005) Effect of thermal injury on splenic myelopoiesis. Shock 23:115–122

    PubMed  Google Scholar 

  • Noel JG et al (2007) Thermal injury elevates the inflammatory monocyte subpopulation in multiple compartments. Shock 28:684–693

    CAS  PubMed  Google Scholar 

  • Obermajer N et al (2011) Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 118:5498–5505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olson JK et al (2001) Direct activation of innate and antigen-presenting functions of microglia following infection with Theiler’s virus. J Virol 75:9780–9789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ostanin DV, Bhattacharya D (2013) Myeloid-derived suppressor cells in the inflammatory bowel diseases. Inflamm Bowel Dis 19:2468–2477

    PubMed  Google Scholar 

  • Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother 59:1593–1600

    PubMed Central  PubMed  Google Scholar 

  • Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ostrand-Rosenberg S et al (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pak AS et al (1995) Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1:95–103

    CAS  PubMed  Google Scholar 

  • Poe SL et al (2013) STAT1-regulated lung MDSC-like cells produce IL-10 and efferocytose apoptotic neutrophils with relevance in resolution of bacterial pneumonia. Mucosal Immunol 6:189–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Popovic PJ et al (2007) Arginine and immunity. J Nutr 137:1681S–1686S

    CAS  PubMed  Google Scholar 

  • Pulendran B et al (2010) Programming dendritic cells to induce T(H)2 and tolerogenic responses. Nat Immunol 11:647–655

    CAS  PubMed  Google Scholar 

  • Qin A et al (2013) Expansion of monocytic myeloid-derived suppressor cells dampens T cell function in HIV-1-seropositive individuals. J Virol 87:1477–1490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rajagopalan S, Long EO (2005) Viral evasion of NK-cell activation. Trends Immunol 26:403–405

    CAS  PubMed  Google Scholar 

  • Raveney BJ et al (2009) TNFR1-dependent regulation of myeloid cell function in experimental autoimmune uveoretinitis. J Immunol 183:2321–2329

    CAS  PubMed  Google Scholar 

  • Rieber N et al (2013) Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clin Exp Immunol 174:45–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ristich V et al (2005) Tolerization of dendritic cells by HLA-G. Eur J Immunol 35:1133–1142

    CAS  PubMed  Google Scholar 

  • Roder J, Hickey WF (1996) Mouse models, immunology, multiple sclerosis and myelination. Nat Genet 12:6–8

    CAS  PubMed  Google Scholar 

  • Rodriguez D et al (2003) Bacterial lipopolysaccharide signaling through Toll-like receptor 4 suppresses asthma-like responses via nitric oxide synthase 2 activity. J Immunol 171:1001–1008

    CAS  PubMed  Google Scholar 

  • Rodriguez PC et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64:5839–5849

    CAS  PubMed  Google Scholar 

  • Rodriguez PC et al (2007) L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudner LA et al (2003) Necroinflammatory liver disease in BALB/c background, TGF-beta 1-deficient mice requires CD4+ T cells. J Immunol 170:4785–4792

    CAS  PubMed  Google Scholar 

  • Sakaguchi N et al (2003) Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426:454–460

    CAS  PubMed  Google Scholar 

  • Schwacha MG et al (2010) Impact of thermal injury on wound infiltration and the dermal inflammatory response. J Surg Res 158:112–120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Senaldi G et al (1992) Immunohistochemical features of the portal tract mononuclear cell infiltrate in chronic aggressive hepatitis. Arch Dis Child 67:1447–1453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serafini P et al (2008) Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res 68:5439–5449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi M et al (2014) Myeloid-derived suppressor cell function is diminished in aspirin-triggered allergic airway hyperresponsiveness in mice. J Allergy Clin Immunol 134(1163–1174):e16

    PubMed  Google Scholar 

  • Shull MM et al (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh NP et al (2007) Resveratrol (trans-3,5,4′-trihydroxystilbene) ameliorates experimental allergic encephalomyelitis, primarily via induction of apoptosis in T cells involving activation of aryl hydrocarbon receptor and estrogen receptor. Mol Pharmacol 72:1508–1521

    CAS  PubMed  Google Scholar 

  • Singh UP et al (2010) Resveratrol (trans-3,5,4′-trihydroxystilbene) induces silent mating type information regulation-1 and down-regulates nuclear transcription factor-kappaB activation to abrogate dextran sulfate sodium-induced colitis. J Pharmacol Exp Ther 332:829–839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh UP et al (2012) Role of resveratrol-induced CD11b(+) Gr-1(+) myeloid derived suppressor cells (MDSCs) in the reduction of CXCR3(+) T cells and amelioration of chronic colitis in IL-10(−/−) mice. Brain Behav Immun 26:72–82

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinha P et al (2007) Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 179:977–983

    CAS  PubMed  Google Scholar 

  • Smolen JS, Aletaha D (2015) Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. Nat Rev Rheumatol 11:276–289

    PubMed  Google Scholar 

  • Soares MP et al (1998) Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med 4:1073–1077

    CAS  PubMed  Google Scholar 

  • Song C et al (2014) Passive transfer of tumour-derived MDSCs inhibits asthma-related airway inflammation. Scand J Immunol 79:98–104

    CAS  PubMed  Google Scholar 

  • Su H et al (2013) Transplantation of granulocytic myeloid-derived suppressor cells (G-MDSCs) could reduce colitis in experimental murine models. J Digestive Dis 14:251–258

    CAS  Google Scholar 

  • Sui Y et al (2014) Vaccine-induced myeloid cell population dampens protective immunity to SIV. J Clin Invest 124:2538–2549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunthamala N et al (2014) HPV16 E2 protein promotes innate immunity by modulating immunosuppressive status. Biochem Biophys Res Commun 446:977–982

    CAS  PubMed  Google Scholar 

  • Suzuki E et al (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    CAS  PubMed  Google Scholar 

  • Tacke RS et al (2011) Extracellular hepatitis C virus core protein activates STAT3 in human monocytes/macrophages/dendritic cells via an IL-6 autocrine pathway. J Biol Chem 286:10847–10855

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres-Aguilar H et al (2010) Tolerogenic dendritic cells in autoimmune diseases: crucial players in induction and prevention of autoimmunity. Autoimmun Rev 10:8–17

    CAS  PubMed  Google Scholar 

  • Tsuchihashi S et al (2007) Heme oxygenase-1 mediated cytoprotection against liver ischemia and reperfusion injury: inhibition of type-1 interferon signaling. Transplantation 83:1628–1634

    CAS  PubMed  Google Scholar 

  • Tu S et al (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14:408–419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Turnquist HR et al (2011) IL-33 expands suppressive CD11b+Gr-1(int) and regulatory T cells, including ST2L+ Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. J Immunol 187:4598–4610

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaknin I et al (2008) A common pathway mediated through Toll-like receptors leads to T- and natural killer-cell immunosuppression. Blood 111:1437–1447

    CAS  PubMed  Google Scholar 

  • Van Ginderachter JA et al (2010) Myeloid-derived suppressor cells in parasitic infections. Eur J Immunol 40:2976–2985

    PubMed  Google Scholar 

  • Vendramin A et al (2014) Graft monocytic myeloid-derived suppressor cell content predicts the risk of acute graft-versus-host disease after allogeneic transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood stem cells. Biol Blood Marrow Transplant 20:2049–2055

    CAS  PubMed  Google Scholar 

  • Vickers SM et al (1999) Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer. Arch Surg 134:245–251

    CAS  PubMed  Google Scholar 

  • Vollbrecht T et al (2012) Chronic progressive HIV-1 infection is associated with elevated levels of myeloid-derived suppressor cells. AIDS 26:F31–F37

    CAS  PubMed  Google Scholar 

  • Wang Y et al (2012) Myeloid-derived suppressor cells participate in preventing graft rejection. Clin Dev Immunol 2012:731486

    PubMed Central  PubMed  Google Scholar 

  • Wang D et al (2013) Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice. Biol Blood Marrow Transplant 19:692–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W et al (2015) Functional characterization of myeloid-derived suppressor cell subpopulations during the development of experimental arthritis. Eur J Immunol 45:464–473

    CAS  PubMed  Google Scholar 

  • Westendorf AM et al (2006) Autoimmune-mediated intestinal inflammation-impact and regulation of antigen-specific CD8 + T cells. Gastroenterology 131:510–524

    CAS  PubMed  Google Scholar 

  • Wu T et al (2012) Smad3-deficient CD11b(+)Gr1(+) myeloid-derived suppressor cells prevent allograft rejection via the nitric oxide pathway. J Immunol 189:4989–5000

    CAS  PubMed  Google Scholar 

  • Wu T et al (2014) The roles of myeloid-derived suppressor cells in transplantation. Expert Rev Clin Immunol 10:1385–1394

    CAS  PubMed  Google Scholar 

  • Yamashita K et al (2006) Heme oxygenase-1 is essential for and promotes tolerance to transplanted organs. FASEB J 20:776–778

    CAS  PubMed  Google Scholar 

  • Yang R et al (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b1+ myeloid cells. Cancer Res 66:6807–6815

    CAS  PubMed  Google Scholar 

  • Yao ZQ et al (2003) HCV core/gC1qR interaction arrests T cell cycle progression through stabilization of the cell cycle inhibitor p27Kip1. Virology 314:271–282

    CAS  PubMed  Google Scholar 

  • Yao ZQ et al (2004) Direct binding of hepatitis C virus core to gC1qR on CD4+ and CD8+ T cells leads to impaired activation of Lck and Akt. J Virol 78:6409–6419

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yi H et al (2012) Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol 189:4295–4304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin B et al (2010) Myeloid-derived suppressor cells prevent type 1 diabetes in murine models. J Immunol 185:5828–5834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Youn JI, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40:2969–2975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young MR, Newby M, Wepsic HT (1987) Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res 47:100–105

    CAS  PubMed  Google Scholar 

  • Zhang W et al (2008) Human inhibitory receptor immunoglobulin-like transcript 2 amplifies CD11b+Gr1+ myeloid-derived suppressor cells that promote long-term survival of allografts. Transplantation 86:1125–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang R et al (2011a) Up-regulation of Gr1+CD11b+ population in spleen of dextran sulfate sodium administered mice works to repair colitis. Inflamm Allergy Drug Targets 10:39–46

    CAS  PubMed  Google Scholar 

  • Zhang R et al (2011b) Dextran sulphate sodium increases splenic Gr1(+)CD11b(+) cells which accelerate recovery from colitis following intravenous transplantation. Clin Exp Immunol 164:417–427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YL et al (2013) Peripheral blood MDSCs, IL-10 and IL-12 in children with asthma and their importance in asthma development. PLoS One 8:e63775

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L et al (2014) Myeloid-derived suppressor cells protect mouse models from autoimmune arthritis via controlling inflammatory response. Inflammation 37:670–677

    CAS  PubMed  Google Scholar 

  • Zhao X et al (2012) TNF signaling drives myeloid-derived suppressor cell accumulation. J Clin Invest 122:4094–4104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong H et al (2014) Origin and pharmacological modulation of tumor-associated regulatory dendritic cells. J Int Cancer 134:2633–2645

    CAS  Google Scholar 

  • Zhu B et al (2007) CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis. J Immunol 179:5228–5237

    CAS  PubMed  Google Scholar 

  • Zhu J et al (2012) Myeloid-derived suppressor cells regulate natural killer cell response to adenovirus-mediated gene transfer. J Virol 86:13689–13696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu XJ et al (2013) Amplification of functional myeloid-derived suppressor cells during stem cell mobilization induced by granulocyte colony-stimulation-factor. J Huazhong Univ Sci Technolog Med Sci 33:817–821

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (Grant numbers: HI11C1791 and HI14C1466).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Gyoo Park.

Additional information

Y. Kwak and H.-E. Kim contributed equally to this work.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, Y., Kim, HE. & Park, S.G. Insights into Myeloid-Derived Suppressor Cells in Inflammatory Diseases. Arch. Immunol. Ther. Exp. 63, 269–285 (2015). https://doi.org/10.1007/s00005-015-0342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-015-0342-1

Keywords

Navigation