Skip to main content
Log in

CD40-activated B cells from patients with systemic lupus erythematosus can be modulated by therapeutic immunoglobulins in vitro

  • Original Article
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Introduction

Aberrant signaling within and between B and T cells, considered to be central in systemic lupus erythematosus (SLE), could depend on enhanced CD40-CD154 activation. As a result, autoreactive B cells, normally anergic, differentiate and secrete antibodies attacking several normal tissues. Thus restorating B cell homeostasis might help control this disease. In this study, two facets of SLE B cells were investigated, namely their in vitro response to CD40-CD154 and the effect of treatment with human immunoglobulins for intravenous use (IVIg).

Materials and Methods

Blood samples from SLE patients and healthy volunteers were obtained and used to isolate B cells, which were activated through CD40 in the presence or absence of IVIg. The phenotype, proliferation, and differentiation of the SLE B cells were determined and compared with those of control B cells using flow cytometry and standard ELISA.

Results

In this model, CD40-activated SLE B cells, as control B cells, proliferated and differentiated and were characterized by the emergence of CD19loCD38++CD138+CD27++ cells. IVIg treatment of the CD40-activated SLE B cells resulted in higher differentiation, characterized by increased secretion rates of IgG and IgM, as reported previously for control B cells.

Conclusions

Taken as a whole, such accelerated differentiation of CD40-activated B cells suggests that IVIg may participate in re-equilibration of the antibody repertoire by replacing pathological antibodies by de novo harmless antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agenes F, Rosado MM, Freitas AA (2000) Peripheral B cell survival. Cell Mol Life Sci 57: 1220–1228

    Article  PubMed  CAS  Google Scholar 

  • Anolik JH, Barnard J, Cappione A et al (2004) Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum 50: 3580–3590

    Article  PubMed  CAS  Google Scholar 

  • Anthony RM, Nimmerjahn F, Ashline DJ et al (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320: 373–376

    Article  PubMed  CAS  Google Scholar 

  • Arce E, Jackson DG, Gill MA et al (2001) Increased frequency of pre-germinal center b cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. J Immunol 167: 2361–2369

    PubMed  CAS  Google Scholar 

  • Banchereau J, de Paoli P, Valle A et al (1991) Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 251: 70–72

    Article  PubMed  CAS  Google Scholar 

  • Branch DW, Porter TF, Paidas MJ et al (2001) Obstetric uses of intravenous immunoglobulin: Successes, failures, and promises. J Allergy Clin Immunol 108: S133–S138

    Article  PubMed  CAS  Google Scholar 

  • Cambridge G, Leandro MJ, Teodorescu M et al (2006) B cell depletion therapy in systemic lupus erythematosus – effect on autoantibody and antimicrobial antibody profiles. Arthritis Rheum 54: 3612–3622

    Article  PubMed  CAS  Google Scholar 

  • Cappione AJ, Pugh-Bernard AE, Anolik JH et al (2004) Lupus IgG V(H)4.34 antibodies bind to a 220-kDa glycoform of CD45/B220 on the surface of human B lymphocytes. J Immunol 172: 4298–4307

    PubMed  CAS  Google Scholar 

  • Carter RH, Zhao H, Liu X et al (2005) Expression and occupancy of BAFF-R on B cells in systemic lupus erythematosus. Arthritis Rheum 52: 3943–3954

    Article  PubMed  CAS  Google Scholar 

  • de Grandmont MJ, Racine C, Roy A et al (2003) Intravenous immunoglobulins induce the in vitro differentiation of human B lymphocytes and the secretion of IgG. Blood 101: 3065–3073

    Article  PubMed  CAS  Google Scholar 

  • Dilillo DJ, Hamaguchi Y, Ueda Y et al (2008) Maintenance of long-lived plasma cells and serological memory despite mature and memory b cell depletion during CD20 immunotherapy in mice. J Immunol 180: 361–371

    PubMed  CAS  Google Scholar 

  • Driver CB, Ishimori M, Weisman MH (2008) The B cell in systemic lupus erythematosus: a rational target for more effective therapy. Ann Rheum Dis 67: 1374–1381

    Article  PubMed  CAS  Google Scholar 

  • Dussault N, Ducas E, Racine C et al (2008) Immunomodulation of human B cells following treatment with intravenous immunoglobulins involves increased phosphorylation of extracellular signal-regulated kinases 1 and 2. Int Immunol 20: 1369–1379

    Article  PubMed  CAS  Google Scholar 

  • Fecteau JF, Néron S (2003) CD40 stimulation of human peripheral B lymphocytes: distinct response from nanve and memory cells. J Immunol 171: 4621–4629

    PubMed  CAS  Google Scholar 

  • Gladman DD, Goldsmith CH, Urowitz MB et al (2000) The Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) damage index for systemic lupus erythematosus international comparison. J Rheumatol 27: 373–376

    PubMed  CAS  Google Scholar 

  • Gonzalez-Amaro R, Portales-Perez D, Baranda L et al (1998) Role of IL-10 in the abnormalities of early cell activation events of lymphocytes from patients with systemic lupus erythematosus. J Autoimmun 11: 395–402

    Article  PubMed  CAS  Google Scholar 

  • Grammer AC, Lipsky PE (2002) CD154-CD40 interactions mediate differentiation to plasma cells in healthy individuals and persons with systemic lupus erythematosus. Arthritis Rheum 46: 1417–1429

    Article  PubMed  CAS  Google Scholar 

  • Grammer AC, Lipsky PE (2003) B cell abnormalities in systemic lupus erythematosus. Arthritis Res Ther 5(suppl 4):S22–27

    Google Scholar 

  • Grammer AC, Slota R, Fischer R et al (2003) Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest 112: 1506–1520

    PubMed  CAS  Google Scholar 

  • Harada Y, Kawano MM, Huang N et al (1996) Identification of early plasma cells in peripheral blood and their clinical significance. Br J Haematol 92: 184–191

    Article  PubMed  CAS  Google Scholar 

  • Harigai M, Hara M, Fukasawa C et al (1999) Responsiveness of peripheral blood B cells to recombinant CD40 ligand in patients with systemic lupus erythematosus. Lupus 8: 227–233

    Article  PubMed  CAS  Google Scholar 

  • Hawker G, Gabriel S, Bombardier C et al (1993) A reliability study of SLEDAI: a disease activity index for systemic lupus erythematosus. J Rheumatol 20: 657–660

    PubMed  CAS  Google Scholar 

  • Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40: 1725

    Article  PubMed  CAS  Google Scholar 

  • Isenberg DA, McClure C, Farewell V et al (1998) Correlation of 9G4 idiotope with disease activity in patients with systemic lupus erythematosus. Ann Rheum Dis 57: 566–570

    Article  PubMed  CAS  Google Scholar 

  • Jacobi AM, Odendahl M, Reiter K et al (2003) Correlation between circulating CD27(high) plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 48: 1332–1342

    Article  PubMed  Google Scholar 

  • Kaveri SV, Dietrich G, Hurez V et al (1991) Intravenous immunoglobulins (IVIg) in the treatment of autoimmune diseases. Clin Exp Immunol 86: 192–198

    Article  PubMed  CAS  Google Scholar 

  • Kazatchkine MD, Dietrich G, Hurez V et al (1994) V region-mediated selection of autoreactive repertoires by intravenous immunoglobulin (i.v.Ig). Immunol Rev 139: 79–107

    Article  PubMed  CAS  Google Scholar 

  • Klinman DM, Shirai A, Conover J et al (1994) Cross-reactivity of IgG anti-DNA-secreting B cells in patients with systemic lupus erythematosus. Eur J Immunol 24: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Koshy M, Berger D, Crow MK (1996) Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J Clin Invest 98: 826–837

    Article  PubMed  CAS  Google Scholar 

  • Le Pottier L, Bendaoud B, Dueymes M et al (2007) BAFF, a new target for intravenous immunoglobulin in autoimmunity and cancer. J Clin Immunol 27: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Liang MH, Socher SA, Larson MG et al (1989) Reliability and validity of six systems for the clinical assessment of disease activity in systemic lupus erythematosus. Arthritis Rheum 32: 1107–1118

    Article  PubMed  CAS  Google Scholar 

  • Mandik-Nayak L, Ridge N, Fields M et al (2008) Role of B cells in systemic lupus erythematosus and rheumatoid arthritis. Curr Opin Immunol 20: 639–645

    Article  PubMed  CAS  Google Scholar 

  • McHeyzer-Williams LJ, Malherbe LP, McHeyzer-Williams MG (2006) Checkpoints in memory B-cell evolution. Immunol Rev 211: 255–268

    Article  PubMed  CAS  Google Scholar 

  • Morell A (1997) Pharmacokinetics of intravenous immunoglobulin preparations. In: Lee ML, Strand V (eds) Intravenous immunoglobulins in clinical practice. Marcel Dekker, Inc., New-York, NY, pp 1–18

    Google Scholar 

  • Mori I, Parizot C, Dorgham K et al (2008) Prominent plasmacytosis following intravenous immunoglobulin correlates with clinical improvement in Guillain-Barre syndrome. PLoS ONE 3: e2109

    Article  PubMed  CAS  Google Scholar 

  • Nagafuchi H, Shimoyama Y, Kashiwakura J et al (2003) Preferential expression of B7.2 (CD86), but not B7.1 (CD80), on B cells induced by CD40/CD40L interaction is essential for anti-DNA autoantibody production in patients with systemic lupus erythematosus. Clin Exp Rheumatol 21: 71–77

    PubMed  CAS  Google Scholar 

  • Negi VS, Elluru S, Siberil S et al (2007) Intravenous immunoglobulin: An update on the clinical use and mechanisms of action. J Clin Immunol 27: 233–245

    Article  PubMed  CAS  Google Scholar 

  • Néron S, Dussault N, Racine C (2006) Whole-blood leukoreduction filters are a source for cryopreserved cells for phenotypic and functional investigations on peripheral blood lymphocytes. Transfusion 46: 537–544

    Article  PubMed  Google Scholar 

  • Néron S, Pelletier A, Chevrier MC et al (1996) Induction of LFA-1 independent human B cell proliferation and differentiation by binding of CD40 with its ligand. Immunol Invest 25: 79–89

    Article  PubMed  Google Scholar 

  • Néron S, Racine C, Roy A et al (2005) Differential responses of human B-lymphocyte subpopulations to graded levels of CD40-CD154 interaction. Immunology 116: 454–463

    PubMed  Google Scholar 

  • Néron S, Thibault L, Dussault N et al (2007) Characterization of mononuclear cells remaining in the leukoreduction system chambers of apheresis instruments after routine platelet collection: a new source of viable human blood cells. Transfusion 47: 1042–1049

    Article  PubMed  Google Scholar 

  • Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8: 34–47

    Article  PubMed  CAS  Google Scholar 

  • Odendahl M, Jacobi A, Hansen A et al (2000) Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 165: 5970–5979

    PubMed  CAS  Google Scholar 

  • Pugh-Bernard AE, Cambier JC (2006) B cell receptor signaling in human systemic lupus erythematosus. Curr Opin Rheumatol 18: 451–455

    Article  PubMed  CAS  Google Scholar 

  • Pugh-Bernard AE, Silverman GJ, Cappione AJ et al (2001) Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J Clin Invest 108: 1061–1070

    PubMed  CAS  Google Scholar 

  • Putterman C (2004) New approaches to the renal pathogenicity of anti-DNA antibodies in systemic lupus erythematosus. Autoimmun Rev 3: 7–11

    Article  PubMed  CAS  Google Scholar 

  • Radbruch A, Muehlinghaus G, Luger EO et al (2006) Competence and competition: the challenge of becoming a long-lived plasma cell. Nat Rev Immunol 6: 741–750

    Article  PubMed  CAS  Google Scholar 

  • Roy A, Krzykwa E, Lemieux R et al (2001) Increased efficiency of gamma-irradiated versus mitomycin C-treated feeder cells for the expansion of normal human cells in long-term cultures. J Hematother Stem Cell Res 10: 873–880

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Fujimoto M, Hasegawa M et al (2004) Altered blood B lymphocyte homeostasis in systemic sclerosis: expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 50: 1918–1927

    Article  PubMed  Google Scholar 

  • Seite JF, Shoenfeld Y, Youinou P et al (2008) What is the contents of the magic draft IVIg?. Autoimmun Rev 7: 435–439

    Article  PubMed  Google Scholar 

  • Sherer Y, Shoenfeld Y (2006a) Intravenous immunoglobulin for immunomodulation of systemic lupus erythematosus. Autoimmun Rev 5: 153–155

    Article  PubMed  CAS  Google Scholar 

  • Sherer Y, Shoenfeld Y (2006b) Mechanisms of disease: atherosclerosis in autoimmune diseases. Nat Clin Pract Rheumatol 2: 99–106

    Article  PubMed  CAS  Google Scholar 

  • Shoenfeld Y, Katz U (2005) IVIg therapy in autoimmunity and related disorders: our experience with a large cohort of patients. Autoimmunity 38: 123–137

    Article  PubMed  CAS  Google Scholar 

  • Shoenfeld Y, Rauova L, Gilburd B et al (2002) Efficacy of IVIG affinity-purified anti-double-stranded DNA anti-idiotypic antibodies in the treatment of an experimental murine model of systemic lupus erythematosus. Int Immunol 14: 1303–1311

    Article  PubMed  CAS  Google Scholar 

  • Sun KH, Yu CL, Tang SJ et al (2000) Monoclonal anti-double- stranded DNA autoantibody stimulates the expression and release of IL-1beta, IL-6, IL-8, IL-10 and TNF-alpha from normal human mononuclear cells involving in the lupus pathogenesis. Immunology 99: 352–360

    Article  PubMed  CAS  Google Scholar 

  • Tangye SG, Bryant VL, Cuss AK et al (2006) BAFF, APRIL and human B cell disorders. Semin Immunol 18: 305–317

    Article  PubMed  CAS  Google Scholar 

  • Tha-In T, Bayry J, Metselaar HJ et al (2008) Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol 29: 608–615

    Article  PubMed  CAS  Google Scholar 

  • Toubi E, Kessel A, Shoenfeld Y (2005) High-dose intravenous immunoglobulins: an option in the treatment of systemic lupus erythematosus. Hum Immunol 66: 395–402

    Article  PubMed  CAS  Google Scholar 

  • Toubi E, Shoenfeld Y (2004a) BLyS/BAFF: a potential target in the treatment of active systemic lupus erythematosus. Isr Med Assoc J 6: 99–102

    PubMed  CAS  Google Scholar 

  • Toubi E, Shoenfeld Y (2004b) The role of CD40-CD154 interactions in autoimmunity and the benefit of disrupting this pathway. Autoimmunity 37: 457–464

    Article  PubMed  CAS  Google Scholar 

  • Van Kooten C, Banchereau J (2000) CD40-CD40 ligand. J Leukoc Biol 67: 2–17

    PubMed  CAS  Google Scholar 

  • Vani J, Elluru S, Negi VS et al (2008) Role of natural antibodies in immune homeostasis: IVIg perspective. Autoimmun Rev 7: 440–444

    Article  PubMed  CAS  Google Scholar 

  • Wei C, Anolik J, Cappione A et al (2007) A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 178: 6624–6633

    PubMed  CAS  Google Scholar 

  • Wouters CH, Diegenant C, Ceuppens JL et al (2004) The circulating lymphocyte profiles in patients with discoid lupus erythematosus and systemic lupus erythematosus suggest a pathogenetic relationship. Br J Dermatol 150: 693–700

    Article  PubMed  CAS  Google Scholar 

  • Zandman-Goddard G, Levy Y, Shoenfeld Y (2005) Intravenous immunoglobulin therapy and systemic lupus erythematosus. Clin Rev Allergy Immunol 29: 219–228

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Roschke V, Baker KP et al (2001) Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 166: 6–10

    PubMed  CAS  Google Scholar 

  • Zimmerman R, Radhakrishnan J, Valeri A et al (2001) Advances in the treatment of lupus nephritis. Ann Rev Med 52: 63–78

    Article  PubMed  CAS  Google Scholar 

  • Zouali M (2005) Taming lupus. Sci Am 292: 58–65

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Néron Ph.D..

About this article

Cite this article

Néron, S., Boire, G., Dussault, N. et al. CD40-activated B cells from patients with systemic lupus erythematosus can be modulated by therapeutic immunoglobulins in vitro . Arch. Immunol. Ther. Exp. 57, 447–458 (2009). https://doi.org/10.1007/s00005-009-0048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00005-009-0048-3

Keywords

Navigation