Skip to main content

A critical evaluation of novel algorithms for the off-lattice Monte Carlo simulation of condensed polymer phases

  • Chapter
  • First Online:
Atomistic Modeling of Physical Properties

Part of the book series: Advances in Polymer Science ((POLYMER,volume 116))

Abstract

Novel composite algorithms for efficient off-lattice simulations of dense polymer phases are implemented and evaluated in the case of polyethylene in the united and explicit atom approximations. The simulation algorithms are based on combinations of traditional methods with recently developed Monte Carlo moves. The classical Metropolis Monte Carlo (MMC) and Reptation techniques are supplemented with the Continuum-Configuration Bias (CCB) and the Concerted-Rotation (CONROT) methods. Several extensions of the CONROT method, involving the simultaneous coordinated displacement of four to seven chain backbone sites, are developed and tested in this paper. CONROT-based methods enhance the performance of the algorithm at the level of local segmental motions, whereas the CCB component is important for the convergence of global properties, such as the relaxation of end-to-end distance vectors. The present composite algorithms are able to reproduce quite efficiently equilibrium thermodynamic properties, such as the density and the radial distribution function in the liquid state. However, they fail to generate completely equilibrated melts of long chains (polyethylene with 70 carbon atoms) at the molecular level. In spite of this shortcoming, we believe that these methods constitute the most promising currently available tools for the off-lattice simulation of realistic models of polymer melts and glasses. A satisfactory treatment of relatively long polyethylene chains (with up to 40 carbon atoms in the backbone, according to our estimates) is possible at experimental melt densities, both in the NVT and NPT ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham FF (1986) Adv Phys 35: 1

    Article  CAS  Google Scholar 

  2. Sommer K, Batoulis J, Jilge W, Morbitzer L, Pittel B, Plaetschke R, Reuter K, Timmermann R, Binder K, Paul W, Gentile FT, Heermann DW, Kremer K, Laso M, Suter UW, Ludovice PJ (1991) Adv Mater 3: 590

    Article  CAS  Google Scholar 

  3. Ludovice PJ, Suter UW (1989) In: Encyclopedia of polymer science and engineering, Supplement Vol. 2nd edn. John Wiley, New York, p 11

    Google Scholar 

  4. Van Gunsteren WF, Berendsen HJC (1990) Angew Chem Int Eng 29: 992

    Article  Google Scholar 

  5. McCammon JA, Harvey SC (1987) Dynamics of proteins and nucleic acids. Cambridge Univ Press, Cambridge

    Google Scholar 

  6. Heermann DW (1990) Computer simulation methods, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Binder K (1992) In: Bicerano J (ed) Computational modeling of polymers. Marcel Dekker, New York

    Google Scholar 

  8. Roe RJ (ed) (1991) Computer simulation of polymers. Prentice Hall, Englewood Cliffs

    Google Scholar 

  9. Baumgartner A (1987) In: Binder K (ed) Applications of the Monte Carlo method, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Van Gunsteren WF, Berendsen HJC, Rullmann JAC (1981) Mol Phys 44: 69

    Article  Google Scholar 

  11. Helfand E, Wasserman ZR, Weber TA (1980) Macromolecules 13: 526

    Article  CAS  Google Scholar 

  12. Toxvaerd S (1987) J Chem Phys 86: 3667

    Article  CAS  Google Scholar 

  13. Rossky PJ, Doll JD, Friedman HL (1978) J Chem Phys 69: 4628

    Article  CAS  Google Scholar 

  14. Pangali C, Rao M, Berne BJ Chem Phys Let 55: 413

    Google Scholar 

  15. Kotelyanskii MJ, Suter UW (1992) J Chem Phys 96: 5383

    Article  CAS  Google Scholar 

  16. Kotelyanskii MJ, Suter UW (1992) ACS Polymer Preprints 33: 663

    CAS  Google Scholar 

  17. Mehlig B, Heermann DW, Forrest BM (1992) Phys Rev B 45: 679

    Google Scholar 

  18. Mehlig B, Heermann DW, Forrest BM (1992) Mol Phys 76: 1347

    Article  CAS  Google Scholar 

  19. Forrest BM, Suter UW (1994) Mol Phys (in press)

    Google Scholar 

  20. Theodorou DN, Suter UW (1986) Macromolecules 18: 1467

    Article  Google Scholar 

  21. Theodorou DN, Suter UW (1985) ibid 19: 139

    Article  Google Scholar 

  22. Theodorou DN, Suter UW (1986) ibid 19: 379

    Article  CAS  Google Scholar 

  23. Hutnik M, Argon AA, Suter UW (1991) Macromolecules 24: 5970

    Article  CAS  Google Scholar 

  24. Rutledge GC, Suter UW (1992) Polymer 32: 2179

    Article  Google Scholar 

  25. Rutledge GC, Suter UW (1991) Macromolecules 25: 1546

    Article  Google Scholar 

  26. Boyd RH, Krishna Pant PV (1991) Macromolecules 24: 4073

    Article  CAS  Google Scholar 

  27. Gusev AA, Suter UW (1991) Phys Rev A 43: 6488

    Google Scholar 

  28. Gusev AA, Suter UW (1992) ACS Polymer Preprints 33: 631

    CAS  Google Scholar 

  29. Gusev AA, Suter UW (1993) J Chem Phys 99: 2221

    Article  CAS  Google Scholar 

  30. Mansfield KF, Theodorou DN (1991) Macromolecules 24: 6283

    Article  CAS  Google Scholar 

  31. Rigby D, Roe R-J (1989) J Chem Phys 87: 7285

    Article  Google Scholar 

  32. Rigby D, Roe R-J (1987) ibid 89: 5280

    Article  Google Scholar 

  33. Rigby D, Roe R-J (1988) Macromolecules 22: 2259

    Article  Google Scholar 

  34. Kremer K, Grest G (1990) J Chem Phys 92: 5057

    Article  CAS  Google Scholar 

  35. Smith GD, Boyd RH (1992) Macromolecules 25: 1326

    Article  CAS  Google Scholar 

  36. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  37. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81: 3684

    Article  CAS  Google Scholar 

  38. Berendsen HJC, Postma JPM, Van Gunsteren WF, DiNola A, Haak JR (1984) Nosé, S Mol Phys 52: 255

    Article  Google Scholar 

  39. Andersen HC (1980) J Chem Phys 72: 2384

    Article  CAS  Google Scholar 

  40. Çagin T, Pettitt M (1991) Mol Phys 72: 169

    Article  Google Scholar 

  41. Çagin T, Pettitt M (1991) Mo Simul 6: 5

    Google Scholar 

  42. Bailey RT, North AM, Pethrick RA (1981) Molecular motion in high polymers. Clarendon, Oxford

    Google Scholar 

  43. Sperling LH (1992) Introduction to Physical Polymer Science. Wiley-Interscience, New York

    Google Scholar 

  44. Boyer RF (1992) In: Bicerano J (ed) Computational modeling of polymers. Marcel Dekker, New York

    Google Scholar 

  45. Binder K (1986) Monte Carlo methods in statistical physics, Springer Berlin Heidelberg New York

    Google Scholar 

  46. Olaj OF, Lantschbauer W, Macromol (1987) Chem Rapid Commun 3: 847

    Article  Google Scholar 

  47. Mansfield ML (1982) J Chem Phys 77: 1554

    Article  CAS  Google Scholar 

  48. Pakula T (1982) Macromolecules 20: 679

    Article  Google Scholar 

  49. Pakula T, Geyler S (1987) ibid 20: 2909

    Article  CAS  Google Scholar 

  50. Carmesin I, Kremer K (1992) Macromolecules 21: 2819

    Article  Google Scholar 

  51. Wittmann HP, Kremer K, Binder K (1988) J Chem Phys 96: 6291

    Article  Google Scholar 

  52. Baschnagel J, Binder K, Paul W, Laso M, Suter UW, Batoulis I, Jilge W, Burger T (1991) J Chem Phys 95: 6014

    Article  CAS  Google Scholar 

  53. Bishop M, Ceperley D, Frisch HL, Kalos MH (1980) J Chem Phys 72: 3228

    Article  CAS  Google Scholar 

  54. Vacatello M, Avitabile G, Corradini P, Tuzi A (1980) J Chem Phys 73: 548

    Article  CAS  Google Scholar 

  55. Boyd RH (1989) Macromolecules 22: 2477

    Article  CAS  Google Scholar 

  56. Almarza NG, Enciso E, Bermejo FJ (1992) J Chem Phys 96: 4625

    Article  CAS  Google Scholar 

  57. Northrup SH, McCammon JA (1980) Biopolymers 19: 1001

    Article  CAS  Google Scholar 

  58. Siepmann JI (1990) Mol Phys 70: 1145

    Article  CAS  Google Scholar 

  59. Frenkel D, Mooij GCAM, Smit B (1991) J Phys Condens Matter 3: 3053

    Google Scholar 

  60. Siepmann JI, Frenkel D (1992) Mol Phys 75: 59

    Article  CAS  Google Scholar 

  61. de Pablo JJ, Laso M, Suter UW (1992) J Chem Phys 96: 2395

    Article  Google Scholar 

  62. Widmann A unpublished results

    Google Scholar 

  63. Dodd LR, Boone TD, Theodorou DN (1992) Mol Phys in print

    Google Scholar 

  64. ACS Polymer Preprints 33: 645

    Google Scholar 

  65. Dodd LR, Theodorou DN (1994) article in this volume

    Google Scholar 

  66. Gō N, Scheraga HA (1970) Macromolecules 3: 178

    Article  Google Scholar 

  67. Flory PJ (1974) Macromolecules 7: 381

    Article  CAS  Google Scholar 

  68. Gō N, Scheraga HA (1976) Macromolecules 9: 535

    Article  Google Scholar 

  69. Kitao A, Gō NJ (1991) J Comput Chem 12: 359

    Article  CAS  Google Scholar 

  70. Fixman M (1974) Proc Natl Acad Sci USA 71: 3050

    Article  Google Scholar 

  71. Helfand E (1979) J Chem Phys 71: 5000

    Article  CAS  Google Scholar 

  72. Gottlieb M, Bird RB (1977) J Chem Phys 65: 2467

    Article  Google Scholar 

  73. Gottlieb M (1976) Comp & Chem 1: 155

    Article  Google Scholar 

  74. Pear MR, Weiner JH (1980) J Chem Phys 71: 212

    Article  Google Scholar 

  75. (1979) ibid 72: 3939

    Google Scholar 

  76. Van Gunsteren WF (1980) Mol Phys 40: 1015

    Article  Google Scholar 

  77. Van Gunsteren WF, Karplus M (1982) Macromolecules 15: 1528

    Article  Google Scholar 

  78. Perchak D, Weiner JH, (1982) Macromolecules 15: 545

    Article  CAS  Google Scholar 

  79. Perchak D, Skolnick J, Yaris R (1985) Macromolecules 18: 519

    Article  CAS  Google Scholar 

  80. Almarza NG, Enciso E, Alonso J, Bermejo FJ, Alvarez M (1990) Mol Phys 70: 485

    Article  CAS  Google Scholar 

  81. Valleau JP, Whittington SG (1977) In: Berne BJ (ed) Statistical mechanics a equilibrium techniques. Plenum Press, NY

    Google Scholar 

  82. De Gennes PG (1971) J Chem Phys 55: 572

    Article  Google Scholar 

  83. De Gennes PG (1979) Scaling concepts in Polymer Physics. Cornell Univ Press, Ithaca

    Google Scholar 

  84. Wall FT, Mandel F (1975) J Chem Phys 63: 4592

    Article  CAS  Google Scholar 

  85. Rosenbluth MN, Rosenbluth AW (1955) J Chem Phys 23: 356

    Article  CAS  Google Scholar 

  86. Meirovich H (1984) Macromolecules 17: 2038

    Article  Google Scholar 

  87. Öttinger HC (1985) Macromolecules 81: 93

    Article  Google Scholar 

  88. Meirovich H (1985) Phys Rev A 32: 3699

    Article  Google Scholar 

  89. Livne S, Meirovich H (1988) J Chem Phys 88: 4498

    Article  CAS  Google Scholar 

  90. Harris J, Rice SA (1988) J Chem Phys 88: 1298

    Article  CAS  Google Scholar 

  91. de Pablo JJ, Laso M, Suter UW (1992) J Chem Phys 96: 6157

    Article  Google Scholar 

  92. Laso M, de Pablo JJ, Suter UW (1992) ibid 97: 2817

    Article  CAS  Google Scholar 

  93. de Pablo JJ, Laso M, Suter UW Cochran HD (1993) Fluid Phase Equilibria 83: 323

    Article  Google Scholar 

  94. Frenkel D, Smit B (1992) Mol Phys 75: 983

    Article  CAS  Google Scholar 

  95. Siepmann JI, McDonald IR (1992) Mol Phys 72: 255

    Article  Google Scholar 

  96. Palmer KA, Scheraga HA (1991) J Comput Chem 12: 505

    Article  CAS  Google Scholar 

  97. Flory PJ (1989) Statistical mechanics of chain molecules. Hanser, Munich

    Google Scholar 

  98. Boyd RH, Breitling SM (1974) Macromolecules 7: 855

    Article  CAS  Google Scholar 

  99. Madden WG (1987) J Chem Phys 87: 1405

    Article  CAS  Google Scholar 

  100. (1988) ibid, 88: 3934

    Google Scholar 

  101. Lastoskie CM, Madden WG, in Roe RJ, (ed) (1991) Computer simulation of polymers. Prentice Hall, Englewood Cliffs

    Google Scholar 

  102. Ryckaert JP, Bellemans A (1975) Chem Phys Let 30: 123

    Article  CAS  Google Scholar 

  103. Abe A, Jernigan RL, Flory PJ (1966) J Am Chem Soc 88: 631

    Article  CAS  Google Scholar 

  104. Ketelaar J (1958) Chemical constitution. Elsevier, NY

    Google Scholar 

  105. Dee GT, Ougizawa T, Walsh DJ (1992) Polymer 33: 3462

    Article  CAS  Google Scholar 

  106. de Pablo JJ, Laso M, Suter UW, Siepmann (1993) Mol Phys 80: 55

    Article  Google Scholar 

  107. Wittmann H-P, Kremer K, Binder K (1992) Macrom Chem Theory Simul 1: 275

    Article  CAS  Google Scholar 

  108. Kolinski A, Skolnick J, Yaris R (1986) J Chem Phys 84: 1922

    Article  CAS  Google Scholar 

  109. Smith W Rapaport DC (1992) Mol Simul 9: 25

    CAS  Google Scholar 

  110. Dodd LR, personal communication

    Google Scholar 

  111. Bahar I, Erman B, Monnerie L (1989) Macromolecules 22: 431

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lucien Monnerie U. W. Suter

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Leontidis, E., de Pablo, J.J., Laso, M., Suter, U.W. (1994). A critical evaluation of novel algorithms for the off-lattice Monte Carlo simulation of condensed polymer phases. In: Monnerie, L., Suter, U.W. (eds) Atomistic Modeling of Physical Properties. Advances in Polymer Science, vol 116. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0080202

Download citation

  • DOI: https://doi.org/10.1007/BFb0080202

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57827-7

  • Online ISBN: 978-3-540-48352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics