Skip to main content
Log in

Estimation of hepatic distributional volumes using non-labeled reference markers

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

Hepatic distributional volumes were investigated in the in situ perfused rat liver. Perfusion experiments were conducted using Krebs bicarbonate buffer delivered via the portal vein in single-pass mode at a total flow rate of 15 mL/min. A bolus dose of normal erythrocytes (RBC, vascular marker) and Evans blue (EB, extracellular marker) respectively was administered in the presence and absence of protein. At the end of the experiment, liver total water content was determined by desiccation and freeze-drying methods. Similar moment analysis results and superimposable effluent curves were obtained in the presence (RBC, mean transit time [MTT: 7.31±0.45 s and volume of distribution [V]: 0.17±0.01 mL/g; EB, MTT: 10.9+0.62 s and V: 0.25+0.02 mL/g) and in the absence (RBC,MTT: 7.55±0.84 s and V: 0.18+0.02 mL/g; EB,MTT: 9.24±0.77 s and V: 0.20±0.02 mL/g) of protein, which indicates that the hepatic distribution of RBC and EB within the liver is not influenced by protein. Furthermore, the almost identical results obtained with the desiccation and freeze-drying methods clearly suggest that the freeze-drying method can be used as an alternative to desiccation for the estimation of liver water content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Law R.O. (1982): Techniques and applications of extracellular space determination in mammalian tissues. Experientia, 38(4), 411–421.

    Article  CAS  PubMed  Google Scholar 

  2. Norwich K.H. (1977): Molecular dynamics in biosystems: the kinetics of tracers in intact organism. Pergamon Presss, Oxford.

    Google Scholar 

  3. Trautman E.D., Newbower R.S. (1984): The development of indicator-dilution techniques. IEEE Trans. Biomed. Eng., 31(12), 800–807.

    Article  CAS  PubMed  Google Scholar 

  4. Bassingthwaighte J.B. (1986): Transport of small molecules across the capillary: assessment via multiple indicator dilution methods. In: Baker CH., Nastuk W.L. (eds). Microcirculatory Technology. Academic Press Inc., London, pp. 447–470.

    Google Scholar 

  5. Sahin S., Rowland M. (1998): Development of an optimal method for the dual perfusion of the isolated rat liver. J. Pharmacol. Toxicol. Methods, 39(1), 35–43.

    Article  CAS  PubMed  Google Scholar 

  6. Sahin S., Karabey Y., Kaynak M.S., Hincal A.A. (2006): Potential use of freeze-drying technique for estimation of tissue water content. Methods Find. Exp. Clin. Pharmacol., 28(4), 211–215.

    Article  CAS  PubMed  Google Scholar 

  7. Pang K.S., Lee W.F., Cherry W.F., Yuen V., Accaputo J., Fayz S., Schwab A.J., Goresky C.A. (1988): Effects of perfusate flow rate on measured blood volume, disse space, intracellular water space, and drug extraction in the perfused rat liver preparation: characterization by the multiple indicator dilution technique. J. Pharmacokinet. Biopharm., 16(6), 595–632.

    Article  CAS  PubMed  Google Scholar 

  8. Roberts M.S., Fraser S., Wagner A., McLeod L. (1990): Residence time distributions of solutes in the perfused rat liver using a dispersion model of hepatic elimination: 1. Effect of changes in perfusate flow and albumin concentration on sucrose and taurocholate. J. Pharmacokinet. Biopharm., 18(3), 209–234.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts M.S., Fraser S., Wagner A., McLeod L. (1990): Residence time distributions of solutes in the perfused rat liver using a dispersion model of hepatic elimination: 2. Effect of pharmacological agents, retrograde perfusions, and enzyme inhibition on evans blue, sucrose, water, and taurocholate. J. Pharmacokinet. Biopharm., 18(3), 235–258.

    Article  CAS  PubMed  Google Scholar 

  10. Pang K.S., Barker F. 3rd, Schwab A.J., Goresky C.A. (1990):l4C-urea and58Co-EDTA as reference indicators in hepatic multiple indicator dilution studies. Am. J. Physiol., 259, G32-G40.

    CAS  PubMed  Google Scholar 

  11. Pang K.S., Xu N., Goresky C.A. (1991): D2O as a substitute for 3H2O, as a reference indicator in liver multiple-indicator dilution studies. Am. J. Physiol., 261, G929-G936.

    CAS  PubMed  Google Scholar 

  12. Sahin S., Rowland M. (2000): Estimation of aqueous distributional spaces in the dual perfused rat liver. J. Physiol. (Lond.), 528. 1, 199–207.

    Article  CAS  Google Scholar 

  13. Ahmad A.B., Bennett P.N., Rowland M. (1984): Influence of route of hepatic administration on drug availability. J. Pharmacol. Exp. Then, 230 (3), 718–725.

    CAS  Google Scholar 

  14. Reichen J. (1988): Role of the hepatic artery in canalicular bile formation by the perfused rat liver. A multiple indicator dilution study. J. Clin. Invest., 81 (5), 1462–1469.

    Article  CAS  PubMed  Google Scholar 

  15. Kassissial., Brault A., Huet P.M. (1994): Hepatic artery and portal vein vascularization of normal and cirrhotic rat liver. Hepatology, 19 (5), 1189–1197.

    Google Scholar 

  16. Gonzalez F., Bassingthwaighte J.B. (1990): Heterogeneities in regional volumes of distribution and flows in rabbit heart. Am. J. Physiol., 258 (4pt 1), H1012–1024.

    CAS  PubMed  Google Scholar 

  17. Sato K., Itakura K., Nishida K., Takakura Y., Hashida M., Sezaki H. (1989): Disposition of a polymeric prodrug of mitomycin C, mitomycin C-dextran conjugate, in the perfused rat liver. J. Pharm. Sei., 78(1), 11–16.

    Article  CAS  Google Scholar 

  18. Erickson R.A., Chang K., Lifrak E., Rivera N., Stachura J. (1992): 16,16-dimethyl prostaglandin E2 reduces bile acid-mediated intestinal vascular injury in rats. Gastroenterology, 102(4pt 1), 1295–1305.

    CAS  PubMed  Google Scholar 

  19. Patterson C.E., Rhoades R.A., Garcia J.G.N. (1992): Evans blue dye as a marker of albumin clearance in cultured endothelial monolayer and isolated lung. J. Appl. Physiol., 72 (3), 865–873.

    Article  CAS  PubMed  Google Scholar 

  20. Goresky C.A. (1963): A linear method for determining liver sinusoidal and extravascular volumes. Am. J. Physiol., 204, 626–640.

    CAS  PubMed  Google Scholar 

  21. Nishimura M., Yamaoka K., Naito S., Nakagawa T. (1996): Hepatic local disposition of a drug with high protein binding and high hepatic clearance using BOF-4272 as a model drug. Biol. Pharm. Bull., 19(9), 1197–1202.

    CAS  PubMed  Google Scholar 

  22. Blustajn J., Cuenod C.A., Clement O., Siauve N., Vuillemin-Bodaghi V., Frija G. (1997): Measurement of liver blood volume using a macromolecular MRI contrast agent at equilibrium. Magn. Reson. Imaging, 15(4), 415–421.

    Article  CAS  PubMed  Google Scholar 

  23. Reinoso R.F., Telfer B.A., Rowland M. (2000): Use of a single-pass in situ perfused rat hindlimb to study tissue distribution kinetics. Method development and experiences with Evans blue. J. Pharmacol. Toxicol. Methods, 43(3), 191–198.

    Article  CAS  PubMed  Google Scholar 

  24. Freedman F.B., Johnson J.A. (1969): Equilibrium and kinetic properties of the Evans blue-albumin system. Am. J. Physiol., 216(3), 675–681.

    CAS  PubMed  Google Scholar 

  25. Goresky C.A., Silverman M. (1964): Effect of correction of catheter distortion on calculated liver sinusodial volumes. Am. J. Physiol., 207, 883–892.

    CAS  PubMed  Google Scholar 

  26. Weiss M., Ballinger L.N., Robens M.S. (1998): Kinetic analysis of vascular marker distribution in perfused rat livers after regeneration following partial hepatectomy. J. Hepatol., 29(3), 476–481.

    Article  CAS  PubMed  Google Scholar 

  27. Goresky CA. (1982):Theprocessesofcellularuptakeandexchangein the liver. Fed. Proc, 41(14), 3033–3039.

    CAS  PubMed  Google Scholar 

  28. Tisavipat A., Vibulsreth S., Sheng H.P., Huggins R.A. (1974): Total body water measured by desiccation and by tritiated water in adult rats. J. Appl. Physiol., 37(5), 699–701.

    CAS  PubMed  Google Scholar 

  29. Culebras J.M., Fitzpatrick CF., Brennan M.F., Boyden C.M., Moore F.D. (1977): Total body water and exchangeable hydrogen. II. A review of comparative data from animals based on isotope dilution and desiccation, with report of a new data from the rat. Am. J. Physiol., 232(1), R60-R65.

    CAS  PubMed  Google Scholar 

  30. Kaul S., Ritschel W.A. (1986): Total body water as an index for predicting body fat in rats. Arzneimittel-Forschung., 36 (1), 112–116.

    CAS  PubMed  Google Scholar 

  31. Sahin S., Rowland M. (1998): Estimation of specific hepatic arterial water space. Am. J. Physiol., 275 (38), G228–236.

    CAS  PubMed  Google Scholar 

  32. Reinoso R.F., Telfer B.A., Rowland M. (1997): Tissue water content in rats measured by desiccation. J. Pharmacol. Toxicol. Methods, 38(2), 87–92.

    Article  CAS  PubMed  Google Scholar 

  33. Robinson R.A. (1975): Physicochemical structure of bone. Clin. Orthop. Relat. Res., 112, 263–315.

    Article  PubMed  Google Scholar 

  34. Sahin S., Rowland M. (1999): Distribution kinetics of salicylic acid in the dual-perfused rat liver preparation. Drug Metab. Dispos., 27(3), 373–378.

    CAS  PubMed  Google Scholar 

  35. Sahin S., Rowland M. (2004): Effect of erythrocytes on the hepatic distribution kinetics of antipyrine. Eur. J. Drug Metab. Pharmacokinet., 29(1), 37–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabey, Y., Sahin, S. Estimation of hepatic distributional volumes using non-labeled reference markers. European Journal of Drug Metabolism and Pharmacokinetics 31, 285–290 (2006). https://doi.org/10.1007/BF03190469

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03190469

Keywords

Navigation