Skip to main content
Log in

Ventricular interaction with the loading system

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this investigation was to develop a theoretical framework to predict stroke volume (and therefore cardiac output) when the ventricle is coupled with the arterial impedance. The ultimate objective is to arrive at an analytical description of cardiac output in the closed hydraulic loop of the entire circulatory system on the basis of the properties of the major system components. We developed the framework of analysis of ventriculo-arterial coupling by characterizing both the ventricle and arterial system in terms of the end-systolic pressure vs. stroke volume (Pes-SV) relationships. This approach, motivated by the load-insensitivity of ventricular end-systolic pressure-volume relationship (ESPVR), yielded stroke volume as the intersection between the ventricular Pes-SV relationship and arterial Pes-SV relationship. The theoretical outcome was validated by comparing the stroke volume predicted as a result of interaction between a given ventricular ESPVR and a set of arterial impedances against those SVs actually measured by imposing the same arterial impedance on the isolated canine ventricles. Furthermore, because of the mathematical simplicity of this approach, it enabled us to describe cardiac output in the closed circulatory loop with a small set of analytical equations. We conclude that the proposed framework is useful in analyzing the ventriculo-arterial coupling and various mechanisms which affect cardiac output in the closed circulatory loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Attinger, E.O., A. Anné, and D.A. McDonald. Use of Fourier series for the analysis of biological systems.Biophys. J. 6:291–304, 1966.

    Article  PubMed  CAS  Google Scholar 

  2. Brunner, M.I., A.S. Greene, K. Sagawa, and A.A. Shoukas. Determinants of systemic zero-flow arterial pressure.Am. J. Physiol. 245 (Heart Circ. Physiol. 14):H453-H460, 1983.

    PubMed  CAS  Google Scholar 

  3. Dick, D.E., J.E. Kendreick, G.L. Matson, and V. C. Rideout. Measurement of nonlinearity in the arterial system of the dog by a new method.Circ. Res. 22: 101–112, 1968.

    PubMed  CAS  Google Scholar 

  4. Elzinga, G. and N. Westerhof. Pressures and flow generated by the left ventricle against different impedance.Circ. Res. 32:178–186, 1973.

    PubMed  CAS  Google Scholar 

  5. Elzinga, G., H. Piene, and J.P. Jong. Left and right ventricular pump function and consequences of having two pumps in one heart. A study on the isolated cat heart.Circ. Res. 46:564–574, 1980.

    PubMed  CAS  Google Scholar 

  6. Guyton, A.C. Venous return. InHandbook of Physiology, Section 2, Vol. 2: Circulation, ed. by W.F. Hamilton. Washington, D.C.: American Physiological Society, 1963, pp. 1099–1133.

    Google Scholar 

  7. Guyton, A.C., C.E. Jones, and T.G. Coleman.Circulatory physiology: Cardiac output and its regulation. Philadelphia: Saunders, 1973, pp. 1–556.

    Google Scholar 

  8. Herndon, C.W. and K. Sagawa. Combined effects of aortic and right atrial pressures on aortic flow.Am. J. Physiol. 201: 102–108, 1969.

    Google Scholar 

  9. Nichols, W.W., C.R. Conti, W.E. Walker, and W.R. Milnor. Input impedance of the systemic circulation in man.Circ. Res. 40:451–458, 1977.

    PubMed  CAS  Google Scholar 

  10. Milnor, W.R.Hemodynamics. Baltimore: Williams & Wilkins, 1982, pp. 157–191.

    Google Scholar 

  11. Noble, M.I.M., I.T. Gabe, D. Trenchard, and A. Guz. Blood pressure and flow in the ascending aorta of conscious dog.Cardiovasc. Res. 1:9–29, 1967.

    Article  PubMed  CAS  Google Scholar 

  12. Piene, H. and T. Sund. Flow and power output of right ventricle facing load with variable input impedance.Am. J. Physiol. 237 (Heart Circ. Physiol. 6):H125-H130, 1979.

    PubMed  CAS  Google Scholar 

  13. Piene, H. Interaction between the right heart ventricle and its arterial load: A quantitative solution.Am. J. Physiol. 238 (Heart Circ. Physiol. 7):H932-H937, 1980.

    PubMed  CAS  Google Scholar 

  14. Piene, H. and T. Sund. Calculation of flow and pressure curves from the ventricular pressurevolume-time relationship and load impedance. InCardiovascular System Dynamics: Models and Measurements, edited by T. Kerrer, R. Busse, and H. Hinghofer-Salkay, New York and London: Plenum Press, 1982, pp. 47–56.

    Google Scholar 

  15. Piene, H. and T. Sund. Does normal pulmonary impedance constitute the optimum load for the right ventricle?Am. J. Physiol. 242 (Heart and Circ. Physiol. 11):H154-H160, 1982.

    PubMed  CAS  Google Scholar 

  16. Sagawa, K. Analysis of the ventricular pumping capacity as a function of input and output pressure loads. InPhysical Basis on Circulatory Transport: Regulation and Exchange, edited by E.B. Reeve and A.C. Guyton Philadelphia: Saunders, 1967, pp. 143–151.

    Google Scholar 

  17. Sagawa, K. and A. Eisner. Static pressure-flow relation in the total systemic vascular bed of the dog and its modification by the baroreceptor reflex.Circ. Res. 36:406–413, 1975.

    PubMed  CAS  Google Scholar 

  18. Sagawa, K. The end-systolic pressure-volume relation of the ventricle: Definition, modifications and clinical use.Circulation 63:1223–1227, 1981.

    PubMed  CAS  Google Scholar 

  19. Shoukas, A. Carotid sinus baroreceptor reflex control and epinephrine: Influence on capacitive and resistive properties of the total pulmonary vascular bed of the dog.Circ. Res. 51:95–101, 1982.

    PubMed  CAS  Google Scholar 

  20. Suga, H., K. Sagawa, and A.A. Shoukas. Load independence of the instantaneous pressure volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio.Circ. Res. 32:314–332, 1973.

    PubMed  CAS  Google Scholar 

  21. Suga, H. and K. Sagawa. Instantaneous pressure-volume relationshhips and their ratio in the excised, supported canine left ventricle.Circ. Res. 35:117–125, 1974.

    PubMed  CAS  Google Scholar 

  22. Suga, H. End-systolic pressure-volume relations. Letter to the editor.Circulation 59:419–420, 1979.

    PubMed  CAS  Google Scholar 

  23. Suga, H., A. Kitabatake, and K. Sagawa. End-systolic pressure determines stroke volume from fixed end-diastolic volume in the isolated canine left ventricle under a constant contractile state.Circ. Res. 44:238–249, 1979.

    PubMed  CAS  Google Scholar 

  24. Sunagawa, K., D. Burkhoff, K. Lim, and K. Sagawa. Impedance loading servo pump system for excised canine ventricle.Am. J. Physiol. 243 (Heart Circ. Physiol. 12):H346-H350, 1982.

    PubMed  CAS  Google Scholar 

  25. Sunagawa, K., W.L. Maughan, and K. Sagawa. Influence of heart rate on the sensitivity of stroke volume to afterload compliance and resistance.Circulation 66:II-304, 1982.

    Google Scholar 

  26. Sunagawa, K., W.L. Maughan, D. Burkhoff, and K. Sagawa. Left ventricular interaction with arterial load studied in isolated canine ventricle.Am. J. Physiol. (Heart and Circ. Physiol.) In press.

  27. Westerhof, N., G. Elzinga, and P. Sipkema. Artificial arterial system for pumping hearts.J. Appl. Physiol. 31:776–781, 1971.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunagawa, K., Sagawa, K. & Maughan, W.L. Ventricular interaction with the loading system. Ann Biomed Eng 12, 163–189 (1984). https://doi.org/10.1007/BF02584229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02584229

Keywords

Navigation