Skip to main content
Log in

Conversion between kinetic energy and potential energy in the classical nonlocal Boltzmann equation

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An important property of the classical Boltzmann equation is that kinetic energy is conserved. This is closely connected to the fact that the Boltzmann equation describes the nonequilibrium properties of an “ideal” gas. Generalizations of the Boltzmann equation to higher density involve, among other things, allowing the colliding particles to be at different positions. This spatial nonlocality is known to contribute to the density corrections of gas transport properties. For soft potentials such a spatial separation of the particles also leads to a conversion between kinetic and potential energy. In evaluating these effects the classical dynamics of the whole collision trajectory must be taken into account, involving also the time for the collision process. The resulting time nonlocality has usually been reinterpreted in terms of a spatial nonlocality. However, for a homogeneous system this is not possible and only the time nonlocality remains, this then being responsible for the conversion between kinetic and potential energy. This paper aims to clarify these properties of the nonlocal corrections to the classical mechanical Boltzmann collision term. Comments on the corresponding problem for the quantum Boltzmann equation are also made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. W. Thomas and R. F. Snider,J. Stat. Phys. 2:61 (1970).

    Google Scholar 

  2. R. F. Snider,J. Stat. Phys. 61:443 (1990).

    Google Scholar 

  3. D. Enskog,Kgl. Svenska Vetenskapsakad. Handl. 63(4) (1922).

  4. N. Bogoliubov,J. Phys. U.S.S.R. 10:265 (1946); Problems of a dynamical theory in statistical physics, inStudies in Statistical Physics, Vol. I, Part A, J. de Boer and G. E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1962).

    Google Scholar 

  5. H. S. Green,The Molecular Theory of Fluids (Dover, New York, 1969).

    Google Scholar 

  6. J. H. Irving and J. G. Kirkwood,J. Chem. Phys. 18:817 (1950).

    Google Scholar 

  7. H. J. Kreuzer,Nonequilibrium Thermodynamics and Its Statistical Foundations (Oxford University Press, Oxford, 1981).

    Google Scholar 

  8. R. F. Snider and C. F. Curtiss,Phys. Fluids 1:122 (1958);3:903 (1960).

    Google Scholar 

  9. S. T. Choh, Dissertation, University of Michigan, Ann Arbor, Michigan (1958) (University Microfilms No. mic. 58-7696, Ann Arbor, Michigan).

  10. J. H. Ferziger and H. G. Kaper,Mathematical Theory of Transport Processes in Gases (North-Holland, Amsterdam, 1972).

    Google Scholar 

  11. J. R. Dorfman and H. van Beijeren,The kinetic theory of gases, inStatistical Mechanics, Part B, B. J. Berne, ed. (Plenum Press, New York, 1977).

    Google Scholar 

  12. J. C. Rainwater,J. Chem Phys. 81:495 (1984); D. G. Friend and J. C. Rainwater,Chem. Phys. Lett. 107:590 (1984); J. C. Rainwater and D. G. Friend,Phys. Rev. 36:4062 (1987).

    Google Scholar 

  13. D. E. Stogryn and J. O. Hirschfelder,J. Chem. Phys. 31:1545 (1959);33:942 (1960).

    Google Scholar 

  14. Yu. L. Klimontovich,Kinetic Theory of Nonideal Gases and Nonideal Plasmas (Pergamon Press, Oxford, 1982).

    Google Scholar 

  15. R. F. Snider, F. Laloë, and W. J. Mullin,Physica A, in press.

  16. D. B. Boercker and J. W. Dufty,Ann. Phys. 119:43 (1979).

    Google Scholar 

  17. M. Born and H. S. Green,Proc. Soc. Lond. A 188:10 (1946).

    Google Scholar 

  18. J. G. Kirkwood,J. Chem. Phys. 14:180 (1946).

    Google Scholar 

  19. J. Yvon,La Théorie Statistique des Fluides et l'Équation d'État (Hermann Paris, 1935).

    Google Scholar 

  20. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  21. R. F. Snider,J. Chem. Phys. 32:1051 (1960).

    Google Scholar 

  22. R. F. Snider and B. C. Sanctuary,J. Chem. Phys. 55:1555 (1971).

    Google Scholar 

  23. J. Yvon,J. Phys. Radium 21:569 (1960).

    Google Scholar 

  24. J. W. Dufty and D. B. Boercker,J. Stat. Phys. 57:827 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snider, R.F. Conversion between kinetic energy and potential energy in the classical nonlocal Boltzmann equation. J Stat Phys 80, 1085–1117 (1995). https://doi.org/10.1007/BF02179865

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02179865

Key Words

Navigation