Skip to main content
Log in

Population dynamics and evolutionary processes: the manifold roles of habitat selection

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Any character that has a substantial effect on a species' distribution and abundance can exert a variety of indirect effects on evolutionary processes. It is suggested that an organism's capacity for habitat selection is just such a character. Habitat selection can constrain the selective environment experienced by a population. Habitat selection can also indirectly influence the relative importance of natural selection, drift, and gene flow, through its effect on population size and growth rate. In many circumstances (but not all), habitat selection increases population size and growth rate, and thereby makes selection in a local environment more effective than drift and gene flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonovics, J. (1968) Evolution in closely adjacent plant populations. VI. Manifold effects of gene flow.Heredity,23, 507–24.

    Google Scholar 

  • Barton, N. H. and Charlesworth, B. (1984) Genetic revolutions, founder events, and speciation.Ann. Rev. Ecol. Syst. 15, 133–64.

    Google Scholar 

  • Begon, M. (1977). The effective size of a natural Drosophila subobscura population.Heredity 38, 13–18.

    PubMed  Google Scholar 

  • Begon, M. and Mortimer, A. (1981)Population Ecology. Sinauer Press, Sunderland, Mass.

    Google Scholar 

  • Bradshaw, A. D. (1983) The importance of evolutionary ideas in ecology — and vice versa. B. Shorrocks (ed.), pp. 1–25.Evolutionary Ecology. Blackwells, London.

    Google Scholar 

  • Bush, G. L. (1975) Modes of animal speciation.Ann. Rev. Ecol. Syst. 6, 339–64.

    Google Scholar 

  • Carson, H. L. and Templeton, A. R. (1984) Genetic revolutions in relation to speciation phenomena: the founding of new populations.Ann. Rev. Ecol. Syst. 15, 97–131.

    Google Scholar 

  • Charnov, E. L. (1976) Optimal foraging: The marginal value theorem.Theor. Pop. Biol. 9, 129–36.

    Google Scholar 

  • Comins, H. N. (1977) The development of insecticide resistance in the presence of migration.J. Theor. Biol. 64, 177–97.

    PubMed  Google Scholar 

  • Crow, J. F. and Kimura, M. (1970)An Introduction to Population Genetics Theory. Harper and Row, New York.

    Google Scholar 

  • Diamond, J. M. (1984) ‘Normal’ extinctions of isolated populations. InExtinctions (M. H. Nilecki, ed.) pp. 191–246. University of Chicago Press, Chicago.

    Google Scholar 

  • Emlen, J. M. (1984)Population Biology. Macmillan, New York.

    Google Scholar 

  • Endler, J. A. (1977)Geographic Variation, Speciation, and Clines. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • Endler, J. A. (1986)Natural Selection in the Wild. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • Ewens, W. J. (1982) On the concept of effective population size.Theor. Pop. Biol. 21, 373–8.

    Google Scholar 

  • Fisher, R. A. (1958)The Genetical Theory of Natural Selection. Dover Publications, New York.

    Google Scholar 

  • Ford, E. B. (1974)Ecological Genetics, 4th edn. Chapman & Hall, London.

    Google Scholar 

  • Fretwell, S. D. (1972)Populations in a Seasonal Environment. Princeton Univ. Press: Princeton, N.J.

    Google Scholar 

  • Garcia-Dorado, A. 1986. The effect of niche preference on polymorphism protection in a heterogeneous environment.Evolution 40, 936–45.

    Google Scholar 

  • Georghiou, G. P. and Taylor, C. E. (1977) Genetic and biological influences in the evolution of insecticide resistance.J. Econ. Entom. 70, 319–23.

    PubMed  Google Scholar 

  • Gillespie, J. H. (1983) Some properties of finite populations experiencing strong selection and weak mutation.Amer. Natur. 121, 691–708.

    Google Scholar 

  • Ginzburg, L. R. (1983)Theory of Natural Selection and Population Growth. Benjamin-Cummings, Menlo Park, Ca.

    Google Scholar 

  • Gould, S. J. and Lewontin, R. C. (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme.Proc. Roy. Soc. London (B)205, 581–98.

    Google Scholar 

  • Grant, V. (1980) Gene flow and the homogeneity of species populations.Biol. Zbl. 99, 157–69.

    Google Scholar 

  • Haldane, J. B. S. (1930) A mathematical theory of natural and artificial selection. Part VI. Isolation.Proc. Camb. Phil. Soc. 26, 220–30.

    Google Scholar 

  • Hastings, A. (1983) Can spatial variation alone lead to selection for dispersal?Theor. Pop. Biol. 24, 244–51.

    Google Scholar 

  • Hedrick, P. W. (1986) Genetic polymorphism in heterogeneous environments: A decade later.Ann. Rev. Ecol. Syst. 17, 535–66.

    Google Scholar 

  • Heywood, J. S. (1986) The effect of plant size variation on genetic drift in a population of annuals.Amer. Natur. 127, 851–61.

    Google Scholar 

  • Hill, W. G. (1982) Rates of change in quantitative traits from fixation of new mutations.Proc. Natl. Acad. Sci. 79, 142–5.

    PubMed  Google Scholar 

  • Holt, R. D. (1983) Models for peripheral populations: The role of immigration. InPopulation Biology (H. I. Freedman and C. Strobeck, eds), Lecture Notes in Biomathematics, Vol. 52, pp. 25–32. Springer-Verlag, New York.

    Google Scholar 

  • Holt, R. D. (1985) Population dynamics in two-patch environments: Some anomalous consequences of an optimal habitat distribution.Theor. Pop. Biol. 28, 181–208.

    Google Scholar 

  • Karn, M. N. and Penrose, L. S. (1951) Birth weight and gestation time in relation to maternal age, parity, and infant survival.Annals Eugen. 16, 147–64.

    Google Scholar 

  • Kimura, J. and Crow, J. F. (1963) The measurement of effective population numbers.Evolution 17, 279–88.

    Google Scholar 

  • Kimura, J. and Ohta, T. (1971)Theoretical Aspects of Population Genetics. Princeton University Press: Princeton, N.J.

    Google Scholar 

  • Lande, R. (1976) Natural selection and random genetic drift in phenotypic evolution.Evolution 30, 314–34.

    Google Scholar 

  • Lande, R. (1979) Quantitative genetic analysis of multivariate evolution, applied to brain-body size allometry.Evolution,33, 402–16.

    Google Scholar 

  • Leigh, E. G. (1981) The average lifetime of a population in a varying environment.J. Theor. Biol. 90, 213–39.

    PubMed  Google Scholar 

  • Levin, S., Cohen, D. and Hastings, A. (1984) Dispersal strategies in patchy environments.Theor. Pop. Biol. 26, 165–91.

    Google Scholar 

  • Lynch, M. (1984) The selective valve of alleles underlying polygenic traits.Genetics 108, 1021–33.

    PubMed  Google Scholar 

  • May, R. M. (1976) Simple mathematical models with very complicated dynamics.Nature 261, 459–467.

    PubMed  Google Scholar 

  • May, R. M. and Dodson, A. P. (1986) Population dynamics and the rate of evolution of pesticide resistance. InPesticide Resistance: Strategies and Tactics for Management, pp. 170–93. National Academy Press, Washington, D.C.

    Google Scholar 

  • Maynard Smith, J. (1983) The genetics of stasis and punctuation.Ann. Rev. Genet. 17, 11–25.

    PubMed  Google Scholar 

  • Mayr, E. (1954) Change of genetic environment and evolution. InEvolution as a Process (J. Huxley, A. C. Hardy and E. B. Ford, eds) pp. 157–80. Allen and Unwin, London.

    Google Scholar 

  • Motro, U. and Thomson, G. (1982) On heterozygosity and the effective size of populations subject to size changes.Evolution 36, 1059–66.

    Google Scholar 

  • Mueller, L. D., Wilcox, B. A., Ehrlich, P. A., Heckel, D. G. and Murphy, D. D. (1985) A direct assessment of the role of genetic drift in determining allele frequency variation in populations ofEuphydryas editha.Genetics 110, 495–511.

    PubMed  Google Scholar 

  • Nagylaki, T. 1975. Conditions for the existence of clines.Genetics 80, 595–615.

    Google Scholar 

  • Nagylaki, T. (1977)Selection in One- and Two-Locus Systems. Springer-Verlag, New York.

    Google Scholar 

  • Nagylaki, T. (1978) Clines with asymmetric migration.Genetics 88, 813–27.

    Google Scholar 

  • Nagylaki, T. (1979) The island model with stochastic migration.Genetics 91, 163–76.

    Google Scholar 

  • Nei, M., Maruyama, T. and Chakraberty, R. (1975) The bottleneck effect and genetic variability in populations.Evolution 29, 1–10.

    Google Scholar 

  • Nei, M. and Grauer, D. (1984) Extent of protein polymorphism and the neutral mutation theory.Evol. Biol. 17, 73–118.

    Google Scholar 

  • Newman, C. M., Cohen, J. E. and Kipnis, C. (1985) Neo-darwinian evolution implies punctuated equilibria.Nature 315, 400–1.

    Google Scholar 

  • Ohta, R. (1972) Population size and rate of evolution.J. Mol. Evol. 1, 305–14.

    PubMed  Google Scholar 

  • Parsons, P. A. (1983)The Evolutionary Biology of Colonizing Species. Cambridge University Press, Cambridge.

    Google Scholar 

  • Provine, W. B. (1985). The R.A. Fisher-Sewall Wright controversy and its influence upon modern evolutionary biology.Oxford Surveys in Evol. Biol. 2, 197–119.

    Google Scholar 

  • Rosenzweig, M. L. (1974) On the evolution of habitat selection.Pr. First Internat. Cong. Ecol. pp. 401–404. Center for Agricultural Publishing and Documentation, Wageningen, Netherlands.

    Google Scholar 

  • Rosenzweig, M. L. (1985) Some theoretical aspects of habitat selection. InHabitat Selection in Birds (M. Cody, ed.), pp. 517–540. Academic Press, New York.

    Google Scholar 

  • Rosenzweig, M. L., Brown, S. and Vincent, T. L. (1987) Red Queens and ESS: the coevolution of evolutionary rates.Evol. Ecol. 1, 59–96.

    Google Scholar 

  • Schaffer, W. M. and Rosenzweig, M. L. (1978) Homage to the Red Queen I. Coevolution of predators and their victims.Theor. Pop. Biol. 9, 135–157.

    Google Scholar 

  • Slatkin, M. (1977) Gene flow and genetric drift in a species subject to frequent local extinctions.Theor. Pop. Biol. 12, 253–262.

    Google Scholar 

  • Slatkin, M. (1985) Gene flow in natural populations.Ann. Rev. Ecol. Syst. 16, 393–430.

    Google Scholar 

  • Slatkin, M. (1987) Gene flow and the geographic structure of natural populations.Science 236, 787–792.

    PubMed  Google Scholar 

  • Stanley, S. M. (1979)Macroevolution: Pattern and Process. W. H. Freeman, San Francisco.

    Google Scholar 

  • Taylor, C. E. (1976) Genetic variation in heterogeneous environments.Genetics 83, 887–894.

    PubMed  Google Scholar 

  • Templeton, A. R. and Rothman, E. D. (1981) Evolution in fine-grained environments. II. Habitat selection as a homeostatic mechanism.Theor. Pop. Biol. 19, 326–340.

    Google Scholar 

  • Travis, J. and Trexler, J. C. (1986) Interactions among factors affecting growth, development and survivorship in experimental populations ofBufo terrestris (Anura: Bofonidae).Oecologia 69, 110–116.

    Google Scholar 

  • Via, S. and Lande, R. (1985) Genotype-environment interaction and the evolution of phenotypic plasticity.Evolution 39, 505–522.

    Google Scholar 

  • Wallace, B. (1959) Influence of genetic systems on geographic distribution.Cold Spring Harbor Symp. Quant. Biol. 24, 193–204.

    PubMed  Google Scholar 

  • Wallace, B. (1975) Hard and soft selection revisited.Evolution 29, 465–473.

    Google Scholar 

  • Whitham, T. G. (1980) The theory of habitat selection: Examined and extended using Pemphigus aphids.Amer. Natur. 115, 449–466.

    Google Scholar 

  • Whittaker, R. H. (1967) Gradient analysis of vegetation.Biol. Rev. 42, 207–264.

    PubMed  Google Scholar 

  • Wright, S. (1977)Evolution and the Genetics of Populations. Vol. 3. Experimental Results and Evolutionary Deductions. University of Chicago Press, Chicago.

    Google Scholar 

  • Wright, S. (1982) The shifting balance theory and macroevolution.Ann. Rev. Genet. 16, 1–19.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holt, R.D. Population dynamics and evolutionary processes: the manifold roles of habitat selection. Evol Ecol 1, 331–347 (1987). https://doi.org/10.1007/BF02071557

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02071557

Keywords

Navigation