Skip to main content
Log in

Heterosis in hybrid larch (Larix decidua x leptolepis)

II. Growth characteristics

  • Original Articles
  • Published:
Trees Aims and scope Submit manuscript

Summary

Among 33-year-old forest trees ofLarix decidua, L. leptolepis andL. decidua x leptolepis, the hybrid possessed an above-ground biomass which was three times greater, although all larches displayed similar relative distributions of biomass. At a “relative growth rate” slightly lower than in the parent species, hybrid larch achieved twice the annual carbon gain, increment in stem length and above-ground production, and its foliage-related stem growth was higher than in European (L. decidua) but similar to Japanese (L. leptolepis) larch. A similar “relative growth efficiency” and foliage-related total above-ground production in all trees did reflect the similarity of photosynthetic capacity of the hybrid found at the leaf level. While the lengths of lateral twigs on hybrid branches were intermediate between the European larch with short, and the Japanese larch with large, twigs the hybrid possessed the longest branches with the highest needle biomass. This resulted in a crown structure of the hybrid crown similar to the Japanese larch together with a high needle density on branches as in the European larch. In total, the foliage biomass per crown length was about 30% higher in hybrid larch than in both of the parent species. Thus, the high carbon input for the stem heterosis was based on a “complementation principle” of advantageous parent features at the crown level. Similar slopes of foliage against sapwood area of stem and branches did not indicate a special need for a thick hybrid stem with respect to water transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • El-Sharkawy M, Hesketh J, Muramota H (1968) Leaf photosynthetis rates and other growth characteristics among 26 species ofGossypium. Crop Sci 8: 670–674

    Google Scholar 

  • Gifford RM (1974) A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic metabolism. Aust J Plant Physiol 1: 107–117

    Google Scholar 

  • Gothe H, Schober R (1971) Ein Kreuzungsversuch mitLarix europea DC., Herkunft Schlitz, undLarix leptolepis. Gord Allg Forst Jagdztg 142: 211–217

    Google Scholar 

  • Grosser D (1977) Die Hölzer Mitteleuropas — Ein mikrophotographischer Lehratlas. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Küppers M (1985) Carbon relations and competition between woody species in a central European hedgerow. IV. Growth form and partitioning. Oecologia 66: 343–352

    Google Scholar 

  • Lange OL, Beyschlag W, Tenhunen JD (1987B.) Control of leaf carbon assimilation — input of chemical energy into ecosystems. In: Schulze E-D, Zwölfer H (eds) Ecological studies, vol 61. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Larcher W (1963) Die Leistungsfähigkeit der CO2 Assimilation höherer Pflanzen unter Laboratoriumsbedingungen am natürlichen Standort. Mitt Florist Soziol Arbeitsgem N. F. 10: 20–30

    Google Scholar 

  • Matyssek R (1985a) Der Kohlenstoff-, Wasser- und Nährstoffhaushalt der wechselgrünen und immergrünen Koniferen Lärche, Fichte, Kiefer. Doctoral Thesis, University of Bayreuth

  • Matyssek R (1985b) The carbon balance of three deciduous larch species and an evergreen spruce species near Bayreuth (W Germany). In: Turner H, Tranquillini W (eds) Establishment and tending of subalpine forests: research and management. Proc. 3rd IUFRO Workshop P 1.07-00, 1984. Eidg Anst Forstl Versuchswes Ber 270: 123–133

  • Matyssek R (1986) Carbon, water and nitrogen relatiosn in evergreen and deciduous conifers. Tree Physiol 2: 177–187

    PubMed  Google Scholar 

  • Matyssek R, Schulze E-D (1987) Heterosis in hybrid larch (Larix decidua x leptolepis). I. The role of leaf characteristics. Trees 1: 219–224

    Google Scholar 

  • Odin H (1972) Studies of the increment rhythm of Scots pine and Norway spruce plants. Stud For Suec 97: 1–33

    Google Scholar 

  • Oren R, Werk KS, Schulze E-D (1986) Relationship between foliage and conducting xylem inPicea abies (L.) Karst. Trees 1: 61–69

    Google Scholar 

  • Remphrey WR, Powell GR (1984) Crown architecture ofLarix lancina saplings: quantitative analysis and modelling of (nonsylleptic) order 1 branching relation to development of the main stem. Can J Bot 62: 1906–1915

    Google Scholar 

  • Sachs L (1978) Angewandte Statistik — Statistische Methoden und ihre Anwendung. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Satoo T (1973) Primary production relations in an plantation ofLarix leptolepis in Hokkaido: materials for the study of growth in forest stands. 10. Bull Tokyo Univ For 66: 119–126

    Google Scholar 

  • Schober R (1953) Die japanische Lärche. Schriftenreihe der forstlichen Fakultät der Universität Göttingen, Band 7/8. Sauerländer, Frankfurt

    Google Scholar 

  • Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology. New Series, vol 12B, Physiological plant ecology II. Springer, Berlin Heidelberg New York, pp 615–676

    Google Scholar 

  • Schulze E-D, Fuchs MI, Fuchs M (1977a) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. I. Biomass distribution and daily CO2 uptake in different crown layers. Oecologia 29: 43–61

    Google Scholar 

  • Schulze E-D, Fuchs MI, Fuchs M (1977b) Spatial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. III. The significance of the evergreen habit. Oecologia 30: 239–248

    Google Scholar 

  • Schulze E-D, Cermak J, Matyssek R, Penka M, Zimmermann R, Vasicek F, Gries W, Kucera J (1985) Canopy transpiration and water fluxes in the xylem of the trunk ofLarix andPicea trees — a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475–483

    Google Scholar 

  • Schulze E-D, Küppers M, Matyssek R (1986) The roles of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Schweingruber FH (1978) Mikroskopische Holzanatomie. Bosshard W (ed) Kommissionsverlag Zürcher, Zug

  • Sinha SK, Khanna R (1975) Physiological, biochemical and genetic basis of heterosis. Adv Agron 27: 123–174

    Google Scholar 

  • Von Droste zu Hülshoff B (1969) Struktur und Biomasse eines Fichtenbestandes auf Grund einer Dimensionsanalyse an oberirdischen Baumorganen. Inaugural dissertation, Ludwig-Maximilians-Universität, Munich

    Google Scholar 

  • Waring RH, Schlesinger WH (1985) Forest ecosystems: concepts and management. Academic Press, New York

    Google Scholar 

  • Waring RH, Schroeder PE, Oren R (1982) Application of the pipe model theory to predict canopy leaf area. Can J For Res 12: 556–560

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matyssek, R., Schulze, E.D. Heterosis in hybrid larch (Larix decidua x leptolepis). Trees 1, 225–231 (1987). https://doi.org/10.1007/BF01816820

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01816820

Key words

Navigation