Skip to main content
Log in

Consistency conditions for the integral equations of liquid structures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A thermodynamic consistency principle is established for the closure relations in integral equations that can yield accurate correlation functions as well as accurate thermodynamic properties, A brief lour d'horizon is given for existing consistency approaches. In addition to the common pressure consistency and the pressure energy consistency, we introduce a third requirement based on the Gibbs-Duhem relation. We found that Gibbs Duhem relation, mediated through the chemical potential, is instrumental in procuring accurate behavior of the bridge function and cavity Junction in the overlapping region (0 <r < σ). We test the Lennard Jones fluid over wide ranges ofT * andp * (T * as low as 0.72 andp * up to 11,90(, For more than IS state points we obtain excellent agreement in internal energy, pressure, and chemical potential. Comparison with Monte Carlo data on the bridge Junction and the radial distribution function also shows that the present approach is highly accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, e.g., L. L. Lee,Molecular Thermodynamics for Nonideal Fluids (Butterworths, Boston, 1981.

    Google Scholar 

  2. J. K. Percus and G. J. Yevick,Phys. Rev. 110:1 (1958).

    Google Scholar 

  3. T. Morita,Progr. Theor. Phys. 20:920 (1958). J. M. J. van Leeuwen. J. Groeneveld. and J. de Boer.Physica 25:79 (1959).

    Google Scholar 

  4. T. Morita and K. Hiroike.Progr. Theor. Phys. 23:1003 (1960).

    Google Scholar 

  5. G. A. Martynov and A. G. Vompe.Phys. Rev. E47:1012 (1993).

    Google Scholar 

  6. K. Hiroike,J. Phys. Soc. Japan 15;771 (1960).

    Google Scholar 

  7. F. Lado, S. M. Foiles, and N. W. Ashcroft,Phys. Rev. A28:2374 (1983).

    Google Scholar 

  8. K. Hiroike,Progr. Theor. Phys. 24:317 (1960).

    Google Scholar 

  9. F. J. Ropers and D. A. Young,Phys. Rev. A30:999 (1984).

    Google Scholar 

  10. G. Zerah and J.-P. Hansen,J. Chem. Phys. 84:2336 (1986).

    Google Scholar 

  11. A. G. Vompe and G. A. Martynov,J. Chem. Phys. 100:5249 (1994).

    Google Scholar 

  12. L. L. Lee,J. Chem. Phys. 97:8606 (1992).

    Google Scholar 

  13. L. L. Lee and K. S. Shing.J. Chem. Phys. 91:477 (1989).

    Google Scholar 

  14. L. Verlet,Mol. Phys. 41:183 (1980).

    Google Scholar 

  15. M. Llano-Restrepo and W. G. Chapman,J. Chem. Phys. 97:2046 (1992).

    Google Scholar 

  16. J. D. Weeks, D. Chandler, and H. C. Andersen,J. Chem. Phys. 54:5237 (1971).

    Google Scholar 

  17. A. Z. Panagiotopoulos, U. W. Ulrich, and R. C. Reid,Ind. Eng. Chem. Fundam. 25:525 (1986).

    Google Scholar 

  18. J. J. Nicolas, K. E. Gubbins, W. B. Streett, and D. J. Tildesley,Mol. Phys. 21:1429 (1979).

    Google Scholar 

  19. L. Verlet,Phys. Rev. 165:201 (1968).

    Google Scholar 

  20. P. V. Giaquinta, G. Giunta, and S. P. Giarrita,Phys. Rev. A45:R6966 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lomba, E., Lee, L.L. Consistency conditions for the integral equations of liquid structures. Int J Thermophys 17, 663–672 (1996). https://doi.org/10.1007/BF01441512

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01441512

Key words

Navigation