Skip to main content
Log in

Zirconium tetra-n-butylate modified with different organic acids: Hydrolysis and polymerization of the products

  • Papers
  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

In this work; (a) complexation reaction of zirconium tetra-n-butylate, Zr(OBun)4, with MAc and different organic acids. (b) the hydrolysis reaction of modified Zr species, and (c) the polymerization reaction of complex products are studied. Zr(OBun)4 was reacted with different mole ratios of methacrylic acid (MAc) at room temperature and the maximum combination ratio was found to be 1∶2 [Zr(OBun)4∶MAc] by FT IR. The modification of zirconium tetra-n-butylate with the acid mixtures [methacrylic acid-acetic acid (MeCOOH), methacrylic acid-propionic acid (EtCOOH), methacrylic acidbutyric acid (PrCOOH)] was made for a combination ratio of 1∶1∶1 [MAc∶RCOOH∶Zr(OBun)4R∶Me. Et, Pr] and the products were characterized by1H-NMR, FT-IR, and UV-spectroscopies. Following their synthesis, hydrolysis of the complexes with various amounts of water and polymerization with benzoyl peroxide were realized. The hydrolysis and polymerization products of the complexes were studied by Karl-Fischer Coulometric titration and thermal analysis respectively. Methyl-ethyl-ketone (MEK) and chloroform were chosen as solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Ribot, P. Toledano, and C. Sanchez,Chem. Mater. 3, 759 (1991).

    Google Scholar 

  2. M. Nabavi, S. Doeuff, C. Sanchez, and J. Livage,J. Non-Cyst. Solids 121, 31 (1990).

    Google Scholar 

  3. H. Schmidt,J. Non-Cryst. Solids 100, 51 (1988).

    Google Scholar 

  4. D. R. Ulrich,J. Non-Cryst. Solids 100, 174 (1988).

    Google Scholar 

  5. R. Nass, H. Schmidt, and E. Arpac,Sol-Gel Optics 1328, 258 (1990).

    Google Scholar 

  6. C. J. Brinker and G. W. Scherrer,Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990).

    Google Scholar 

  7. M. J. Munoz-Aguado, M. Gregorkiewitz, and A. Larbot,Mater. Res. Bull. 27, 87 (1992).

    Google Scholar 

  8. J. Wenzel,J. Non-Cryst. Solids 73, 693 (1985).

    Google Scholar 

  9. S. Sakka,Am. Ceram. Soc. Bull. 63, 1136 (1984).

    Google Scholar 

  10. C. W. Hsieh, A. S. T. Chrang, C. C. Lee, and S. J. Yang,J. Non-Cryst. Solids 144, 53 (1992).

    Google Scholar 

  11. K. Yamada, T. Y. Chow, T. Horihata, and M. Nagata,J. Non-Cryst. Solids 100, 316 (1988).

    Google Scholar 

  12. C. Chen, D. F. Ryder, and W. A. Spurgeon,J. Am. Ceram. Soc. 72, 1495 (1989).

    Google Scholar 

  13. S. Sakka, H. Kozuka, and T. Umeda,Scramikkusu Ronbunshi 96, 468 (1988).

    Google Scholar 

  14. H. Nasu, M. Syoyama, and K. Kamiya,Jpn. J. Appl. Phys. 29, L1819 (1990).

    Google Scholar 

  15. G. Phillip and H. Schmidt,J. Non-Cryst. Solids 63, 283 (1984).

    Google Scholar 

  16. C. J. Brinker, D. E. Clarek, and D. R. Ulrich, eds.,Better Ceramics Through Chemistry (Elsevier, New York, 1984).

    Google Scholar 

  17. C. J. Brinker, D. E. Clarck, and D. R. Ulrich, eds.,Better Ceramics Through Chemistry (Elsevier, New York, 1986).

    Google Scholar 

  18. T. Hashimoto, K. Kamiya, and H. Nasu,J. Non-Cryst. Solids 143, 31 (1992).

    Google Scholar 

  19. M. L. Calzada and L. Del Olma,J. Non-Cryst. Solids 121, 413 (1990).

    Google Scholar 

  20. F. Babonneau, L. Coury, and J. Livage,J. Non-Cryst. Solids 121, 153 (1990).

    Google Scholar 

  21. M. Guglielmi and G. Carturan,J. Non-Cryst. Solids 100, 16 (1988).

    Google Scholar 

  22. C. Sanchez, J. Livage, M. Henry, and F. Babonneau,J. Non-Cryst. Solids 100, 65 (1988).

    Google Scholar 

  23. D. C. Bradley,Coord. Chem. Rev. 2, 299 (1967).

    Google Scholar 

  24. R. C. Menrotra,J. Non-Cryst. Solids 121, 1 6 (1990).

    Google Scholar 

  25. M. Guglielmi and G. Carturan,J. Non-Cryst. Solids 100, 24 (1988).

    Google Scholar 

  26. J. M. Mackenzie and D. R. Ulrich, eds.,Ultrastructure Processing of Advanced Ceramics (New York, 1988), p. 77.

  27. V. K. H. Thiele und M. Panse,Z- Anorg. all. Chem 144, 23 (1978).

    Google Scholar 

  28. H. Saylikan, Applications of Sol-Gel Processing to Some Ti, Zr, and Al Alcoholates and Structural Analysis of the Products, PhD thesis, Inönü University, Malatya. Turkey (1992).

  29. R. C. Mehrotra,J. Non-Cryst. Solids 100, 10 (1988).

    Google Scholar 

  30. S. Doeuff, M. Henry, C. Sanchez, and J. Livage,J. Non-Cryst. Solids 89, 206 216 (1987).

    Google Scholar 

  31. C. Sanchez and J. Livage,New J. Chem. 14, 513 (1990).

    Google Scholar 

  32. C. J. Brinker,J. Non-Cryst. Solids 100, 40 (1988).

    Google Scholar 

  33. J. C. Debsikdar,J. Non-Cryst. Solids 86, 231 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayilkan, H., Şener, Ş. & Arpaç, E. Zirconium tetra-n-butylate modified with different organic acids: Hydrolysis and polymerization of the products. J Inorg Organomet Polym 5, 409–423 (1995). https://doi.org/10.1007/BF01193063

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01193063

Key Words

Navigation