Skip to main content
Log in

Comparison of rectangular and triangular fins when condensation occurs

Vergleich zwischen rechteckigen und dreieckigen Rippen bei Kondensation

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

In this study rectangular and triangular fins have been compared when condensation occurs. The temperature distributions and the heat transfer found using quasilinearization techniques and those found by using Gauss-Seidel iteration method are compared and this approximation proved to be quite satisfactory. The fin temperature and the fin effectiveness of the triangular and rectangular fins have been determined with and without condensation and optimum fin dimensions have been given as a function of Biot number.

Zusammenfassung

Rechteckige und dreieckige Rippen werden bei Kondensation verglichen. Temperaturverteilung und Wärmeübergang, die mit Hilfe einer Quasilinearisierung gefunden wurden, werden mit jenen nach einer Gauß-Seidel-Iterationsmethode verglichen. Diese Näherung erweist sich als befriedigend. Rippentemperatur und Rippenwirkungsgrad der dreieckigen und der rechteckigen Rippe werden mit und ohne Kondensation bestimmt; optimale Rippenabmessungen werden als Funktion der Biot-Zahl angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

height of fin

D :

diffusion coefficient Eq. (32)

F x :

variable cross-sectional area of fin

F :

cross-sectional area at the base of fin

F p :

perimeter of fin

h :

average convective heat transfer coefficient

h m :

average mass transfer coefficient

k :

thermal conductivity of fin material

k a :

thermal conductivity of surrounding air Eq. (34)

L :

length of fin

m :

parameter=(hF p /kF)1/2

m 1 :

dimensionless parameter=(1+γB/T r )

m w :

parameter=m·m k1/2 1

m A :

mass flux

P :

pressure

Q :

heat transfer rate

R :

parameter of Eq. (13)

R A :

specific gas constant of water vapor

h fg :

latent heat

T :

temperature of fin

T ref :

reference temperature Eq. (15) and Eq. (16)

T 0 :

temperature at the base of fin

T :

surrounding temperature

α :

thermal diffusivity

η :

fin effectiveness

φ :

relative humidity

ξ :

length parameter=x/L

θ :

dimensionless temperature=(T-T )/(T o -t )

A :

water vapor

b :

base

c :

convective

d :

dry

L :

latent

max:

maximum

opt:

optimum

r :

rectangular

t :

triangular

w :

wet

References

  1. Murray, W.: Numerical methods for unconstrained optimization. Nat. Phys. Lab. New York: Academic Press 1972, pp. 87–106

    Google Scholar 

  2. Kiliç, A.; Onat, K.: The optimum shape for convecting rectangular fins when condensation occurs. Wärme-Stoff-übertrag. 15 (1981) 125–133

    Google Scholar 

  3. Kern, D. Q.; Kraus, A. D.: Extended surface heat transfer. McGraw-Hill 1976

  4. Myers, E. G.: Analytical methods in conduction heat transfer. McGraw-Hill 1971

  5. Kraus, A. D.; Snider, A. D.; Doty, L. F.: An efficient algorithm for evaluating arrays of extended surface. J. Heat Transfer 100 (1978) 288–293

    Google Scholar 

  6. Kraus, A. D.; Snider, A. D.: New parametrizations of heat transfer in fins and spines. J. Heat Transfer 102 (1980) 415–419

    Google Scholar 

  7. Eder, H.: Dimensioning of fins with general non-linear cooling laws. Wärme-Stoffübertrag. 2 (1973) 86–91

    Google Scholar 

  8. Kalaba, R.: On non-linear differential equations, the maximum operation and monotone convergence. J. Math. Mech. 8 (1959) 519–574

    Google Scholar 

  9. Radbill, J. R.; McCue, G. A.: Quasilinearization and nonlinear problems in fluid and orbital mechanics. New York: American Elsevier 1970

    Google Scholar 

  10. Bellman, R.: Methods of non-linear analysis. Math. Sci. and Eng. 61 (2) 1973

  11. Bellman, R.: Function equations in the theory of dynamic programming; Non-linear differential equations. Proc. Nat. Acad. Sci. 41 (1955) 482–485

    Google Scholar 

  12. Angel, E.; Belman, R.: Dynamic programing and partial differential equations. Math. Sci. and Eng. 61 (2) 1973

  13. Ames, W. F.: Non-linear partial differential equations. A symposium on methods of solution. New York: Academic Press 1967, pp. 43–53

    Google Scholar 

  14. Yudell, L. L.: Integrals of Bessel Functions. New York: McGraw Hill 1972

    Google Scholar 

  15. Eckert, E. R. G.; Drake, M. R. Jr.: Analysis of heat and mass transfer. New York: McGraw Hill 1972

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toner, M., Kiliç, A. & Onat, K. Comparison of rectangular and triangular fins when condensation occurs. Warme- und Stoffubertragung 17, 65–72 (1983). https://doi.org/10.1007/BF01007220

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01007220

Keywords

Navigation