Skip to main content
Log in

Calmodulin and the regulation of smooth muscle contraction

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Calmodulin, the ubiquitous and multifunctional Ca2+-binding protein, mediates many of the regulatory effects of Ca2+, including the contractile state of smooth muscle. The principal function of calmodulin in smooth muscle is to activate crossbridge cycling and the development of force in response to a [Ca2+]i transientvia the activation of myosin light-chain kinase and phosphorylation of myosin. A distinct calmodulin-dependent kinase, Ca2+/calmodulin-dependent protein kinase II, has been implicated in modulation of smooth-muscle contraction. This kinase phosphorylates myosin light-chain kinase, resulting in an increase in the calmodulin concentration required for half-maximal activation of myosin light-chain kinase, and may account for desensitization of the contractile response to Ca2+. In addition, the thin filament-associated proteins, caldesmon and calponin, which inhibit the actin-activated MgATPase activity of smooth-muscle myosin (the cross-bridge cycling rate), appear to be regulated by calmodulin, either by the direct binding of Ca2+/calmodulin or indirectly by phosphorylation catalysed by Ca2+/calmodulin-dependent protein kinase II. Another level at which calmodulin can regulate smooth-muscle contraction involves proteins which control the movement of Ca2+ across the sarcolemmal and sarcoplasmic reticulum membranes and which are regulated by Ca2+/calmodulin, e.g. the sarcolemmal Ca2+ pump and the ryanodine receptor/Ca2+ release channel, and other proteins which indirectly regulate [Ca2+]i via cyclic nucleotide synthesis and breakdown, e.g. NO synthase and cyclic nucleotide phosphodiesterase. The interplay of such regulatory mechanisms provides the flexibility and adaptability required for the normal functioning of smooth-muscle tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grand RJA, Perry SV: The amino acid sequence of the troponin C-like protein (modulator protein) from bovine uterus. FEBS Lett 92: 137–142, 1978

    Google Scholar 

  2. Watterson DM, Sharief F, Vanaman TC: The complete amino acid sequence of the Ca2+-dependent modulator protein (calmodulin) of bovine brain. J Biol Chem 255: 962–975, 1980

    Google Scholar 

  3. Klee CB, Vanaman TC: Calmodulin. Adv Protein Chem 35: 213–321, 1982

    Google Scholar 

  4. Molla A, Kilhoffer M-C, Ferraz C, Audemard E, Walsh MP, Demaille JG:Octopus calmodulin. The trimethyllysyl residue is not required for myosin light chain kinase activation. J Biol Chem 256: 15–18, 1981

    Google Scholar 

  5. Kretsinger RH, Nockolds CE: Carp muscle calcium binding protein. J Biol Chem 248: 3313–3326, 1973

    Google Scholar 

  6. Greaser ML, Gergely J: Purification and properties of the components from troponin. J Biol Chem 248: 2125–2133, 1973

    Google Scholar 

  7. Cheung WY: Calmodulin plays a pivotal role in cellular regulation. Science 207: 19–27, 1980

    Google Scholar 

  8. Means AR, Dedman JR: Calmodulin—an intracellular calcium receptor. Nature 285: 73–77, 1980

    Google Scholar 

  9. Cheung WY: Cyclic 3′,5′-nucleotide phosphodiesterase. Demonstration of an activator. Biochem Biophys Res Commun 38: 533–538, 1970

    Google Scholar 

  10. Kakiuchi S, Yamazaki R, Nakajima H: Properties of a heat-stable phosphodiesterase activating factor isolated from brain extracts. Studies on cyclic 3′,5′-nucleotide phosphodiesterase. Proc Jpn Acad 46: 589–594, 1970

    Google Scholar 

  11. Beavo JA, Reifsnyder DH: Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 11: 150–155, 1990

    Google Scholar 

  12. Kakiuchi S, Yamazaki R, Teshima Y: Cyclic 3′,5′-nucleotide phosphodiesterase. IV. Two enzymes with different properties from brain. Biochem Biophys Res Commun 42: 968–974, 1971

    Google Scholar 

  13. Teo TS, Wang JH: Mechanism of activation of a cyclic adenosine 3′∶5′-monophosphate phosphodiesterase from bovine heart by calcium ions. J Biol Chem 248: 5950–5955, 1973

    Google Scholar 

  14. Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ: Three-dimensional structure of calmodulin. Nature 315: 37–40, 1985

    Google Scholar 

  15. Babu YS, Bugg CE, Cook WJ: Structure of calmodulin refined at 2.2 Å resolution. J Mol Biol 204: 191–204, 1988

    Google Scholar 

  16. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA: Calmodulin structure refined at 1.7 Å resolution. J Mol Biol 228: 1177–1192, 1992

    Google Scholar 

  17. Walsh MP: Calmodulin: Structure-function relations and inhibitors. Rev Clin Basic Pharmacol 5: 35–69, 1985

    Google Scholar 

  18. Teleman A, Drakenberg T, Forsén S: Kinetics of Ca2+ binding to calmodulin and its tryptic fragments studied by43Ca-NMR. Biochim Biophys Acta 873: 204–213, 1986

    Google Scholar 

  19. Kilhoffer M-C, Kubina M, Travers F, Haiech J: Use of engineered proteins with internal tryptophan reporter groups and perturbation techniques to probe the mechanism of ligand-protein interactions: Investigation of the mechanism of calcium binding to calmodulin. Biochemistry 31: 8098–8106, 1993

    Google Scholar 

  20. Minowa O, Yagi K: Calcium binding to tryptic fragments of calmodulin. J Biochem (Tokyo) 96: 1175–1182, 1984

    Google Scholar 

  21. Linse S, Helmersson A, Forsén S: Calcium binding to calmodulin and its globular domains. J Biol Chem 266: 8050–8054, 1991

    Google Scholar 

  22. Yazawa M, Ikura M, Hikichi K, Ying L, Yagi K: Communication between two globular domains of calmodulin in the presence of mastoparan or caldesmon fragment. J Biol Chem 262: 10951–10954, 1987

    Google Scholar 

  23. Olwin BD, Storm DR: Calcium binding to complexes of calmodulin and calmodulin binding proteins. Biochemistry 24: 8081–8086, 1985

    Google Scholar 

  24. Wang JH, Teo TS, Ho HC, Stevens FC: Bovine heart protein activator of cyclic nucleotide phosphodiesterase. Adv Cyclic Nucleotide Res 5: 179–194, 1975

    Google Scholar 

  25. Walsh MP, Stevens FC, Oikawa K, Kay CM: Circular dichroism studies of native and chemically modified Ca2+-dependent protein modulator. Can J Biochem 57: 267–278, 1979

    Google Scholar 

  26. Seamon KB: Calcium-and magnesium-dependent conformational states of calmodulin as determined by nuclear magnetic resonance. Biochemistry 19: 207–215, 1980

    Google Scholar 

  27. Ikura M, Hiraoki T, Hikichi K, Minowa O, Yamaguchi H, Yazawa M, Yagi K: Nuclear magnetic resonannce studies on calmodulin: Ca2+-dependent spectral change of proteolytic fragments. Biochemistry 23: 3124–3128, 1984

    Google Scholar 

  28. Walsh MP, Stevens FC, Kuznicki J, Drabikowski W: Characterization of tryptic fragments obtained from bovine brain modulator of cyclic nucleotide phosphodiesterase. J Biol Chem 252: 7440–7443, 1977

    Google Scholar 

  29. Walsh MP, Stevens FC: Chemical modification studies on the Ca2+-dependent protein modulator of cyclic nucleotide phosphodiesterase. Biochemistry 16: 2742–2749, 1977

    Google Scholar 

  30. Walsh MP, Stevens FC: Chemical modification studies on the Ca2+-dependent protein modulator: The role of methionine residues in the activation of cyclic nucleotide phosphodiesterase. Biochemistry 17: 3924–3928, 1978

    Google Scholar 

  31. Blumenthal DK, Stull JT: Activation of skeletal muscle myosin light chain kinase by calcium (2+) and calmodulin. Biochemistry 19: 5608–5614, 1980

    Google Scholar 

  32. LaPorte DC, Wierman BM, Storm DR: Calcium-induced exposure of a hydrophobic surface on calmodulin. Biochemistry 19: 3814–3819, 1980

    Google Scholar 

  33. Tanaka T, Hidaka H: Hydrophobic regions function in calmodulin-enzyme(s) interactions. J Biol Chem 255: 11078–11080, 1980

    Google Scholar 

  34. Wall CM, Grand RJA, Perry SV: Biological activities of the peptides obtained by digestion of troponin C and calmodulin with thrombin. Biochem J 195: 307–316, 1981

    Google Scholar 

  35. Ikura M, Clore GM, Gronenborn AM, Zhu G, Klee CB, Bax A: Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science 256: 632–638, 1992

    Google Scholar 

  36. Meador WE, Means AR, Quiocho FA: Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257: 1251–1255, 1992

    Google Scholar 

  37. Persechini A, Kretsinger RH: The central helix of calmodulin functions as a flexible tether. J Biol Chem 263: 12175–12178, 1988

    Google Scholar 

  38. Kemp BE, Stull JT: Myosin light chain kinases. In: B.E. Kemp (ed.). Peptides and Protein Phosphorylation. CRC Press, Boca Raton, FL, 1990, pp 115–133

    Google Scholar 

  39. Persechini A, Hartshorne DJ: Ordered phosphorylation of the two 20,000 molecular weight light chains of smooth muscle myosin. Biochemistry 22: 470–476, 1983

    Google Scholar 

  40. Adelstein RS, Klee CB: Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem 256: 7501–7509, 1981

    Google Scholar 

  41. Craig R, Smith R, Kendrick-Jones J: Light chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature 302: 436–439, 1983

    Google Scholar 

  42. Rayment I, Rypniewski WR, Schmidt-Bäse K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM: Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261: 50–58, 1993

    Google Scholar 

  43. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA: Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58–65, 1993

    Google Scholar 

  44. Cooke PH, Fay FS, Craig R: Myosin filaments isolated from skinned amphibian smooth muscle cells are side-polar. J Muscle Res Cell Motil 10: 206–220, 1989

    Google Scholar 

  45. Somlyo AV, Butler TM, Bond M, Somlyo AP: Myosin filamanth have nonphosphorylated light chains in relaxed smooth muscle. Nature 294: 567–569, 1981

    Google Scholar 

  46. Cooke R: The mechanism of muscle contraction. CRC Crit Rev Biochem 21: 53–118, 1986

    Google Scholar 

  47. Huxley HE: Sliding filaments and molecular motile systems. J Biol Chem 265: 8347–8350, 1990

    Google Scholar 

  48. Hartshorne DJ: Biochemistry of the contractile process in smooth muscle In: L.R. Johnson (ed). Physiology of the Gastrointestinal Tract, Second Edition. Raven Press, New York, 1987, pp 423–482

    Google Scholar 

  49. Perrie WT, Smillie LB, Perry SV: A phosphorylated light-chain component of myosin from skeletal muscle. Biochem J 135: 151–164, 1973

    Google Scholar 

  50. Sweeney HL, Bowman BF, Stull JT: Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264: C1085-C1095, 1993

    Google Scholar 

  51. Silver PJ, Buja LM, Stull JT: Frequency-dependent myosin light chain phosphorylation in isolated myocardium. J Mol Cell Cardiol 18: 31–37, 1986

    Google Scholar 

  52. Weber A, Murray JM: Molecular control mechanisms in muscle contraction. Physiol Rev 53: 612–673, 1973

    Google Scholar 

  53. Perry SV: The regulation of contractile activity in muscle. Biochem Soc Transac 7: 593–617, 1979

    Google Scholar 

  54. Sanders C, Smillie LB: Amino acid sequence of chicken gizzard β-tropomyosin: Comparison of the chicken gizzard, rabbit skeletal and equine platelet tropomyosins. J Biol Chem 260: 7264–7275, 1985

    Google Scholar 

  55. Sobieszek A, Small JV: Regulation of the actin-myosin interaction in vertebrate smooth muscle:Activation via a MLCK and the effect of tropomyosin. J Mol Biol 112: 559–576, 1977

    Google Scholar 

  56. Edelman AM, Lin W-H, Osterhout DJ, Bennett MK, Kennedy MB, Krebs EG: Phosphorylation of smooth muscle myosin by type II Ca2+/calmodulin-dependent protein kinase. Mol Cell Biochem 97: 87–98, 1990

    Google Scholar 

  57. Ikebe M, Hartshorne DJ, Elzinga M: Identification, phosphorylation, and dephosphorylation of a second site for myosin light chain kinase on the 20,000-dalton light chain of smooth muscle myosin. J Biol Chem 261: 36–39, 1986

    Google Scholar 

  58. Haeberle JR, Sutton TA, Trockman BA: Phosphorylation of two sites on smooth muscle myosin. Effects on contraction of glycerinated vascular smooth muscle. J Biol Chem 263: 4424–4429, 1988

    Google Scholar 

  59. Colburn JC, Michnoff CH, Hsu L-C, Slaughter CA, Kamm KE, Stull JT: Sites phosphorylated in myosin light chain in contracting smooth muscle. J Biol Chem 263: 19166–19173, 1988

    Google Scholar 

  60. Persechini A, Kamm KE, Stull JT: Different phosphorylated forms of myosin in contracting tracheal smooth muscle. J Biol Chem 261: 6293–6299, 1986

    Google Scholar 

  61. Trybus KM, Lowey S: Mechanism of smooth muscle myosin phosphorylation. J Biol Chem 260: 15988–15995, 1985

    Google Scholar 

  62. Hoar PE, Kerrick WGL, Cassidy PS: Chicken gizzard: Relation between calcium-activated phosphorylation and contraction. Science 204: 503–506, 1979

    Google Scholar 

  63. Sellers JR: Mechanism of the phosphorylation-dependent regulation of smooth muscle heavy meromyosin. J Biol Chem 260: 15815–15819, 1985

    Google Scholar 

  64. Trybus KM, Huiatt TW, Lowey S: A bent monomeric conformation of myosin from smooth muscle. Proc Natl Acad Sci USA 79: 6151–6155, 1982

    Google Scholar 

  65. Onishi H, Wakabayashi T: Electron microscopic studies of myosin molecules from chicken gizzard muscle I: The formation of the intramolecular loop in the myosin tail. J Biochem (Tokyo) 92: 871–879, 1982

    Google Scholar 

  66. Ikebe M, Hinkins S, Harshorne DJ: Correlation of enzymatic properties and conformation of smooth muscle myosin. Biochemistry 22: 4580–4587, 1983

    Google Scholar 

  67. Cooke PH, Kargacin G, Craig R, Fogarty K, Fay FS, Hagen S: Molecular structure and organization of filaments in single skinned smooth muscle cells. In: M.J. Siegman, A.P. Somlyo, N.L. Stephens (eds). Regulation and Contraction of Smooth Muscle. Alan R. Liss, New York, 1987, pp 1–25

    Google Scholar 

  68. Ikebe M, Hartshorne DJ: Conformation-dependent proteolysis of smooth-muscle myosin. J Biol Chem 259: 11639–11642, 1984

    Google Scholar 

  69. Dabrowska R, Aromatorio D, Sherry JMF, Hartshorne DJ: Composition of the myosin light chain kinase from chicken gizzard. Biochem Biophys Res Commun 78: 1263–1272, 1977

    Google Scholar 

  70. DeFeo TT, Morgan KG: Calcium-force relationship as detected with aequorin in two different vascular smooth muscles of the ferret. J Physiol 369: 269–282, 1985

    Google Scholar 

  71. Williams DA, Fay FS: Calcium transients and resting levels in isolated smooth muscle cells as monitored with quin-2. Am J Physiol 250: C779-C791, 1986

    Google Scholar 

  72. Williams DA, Becker PL, Fay FS: Regional changes in calcium underlying contraction of single smooth muscle cells. Science 235: 1644–1648, 1987

    Google Scholar 

  73. Olwin BB, Edelman AM, Krebs EG, Storm DR: Quantitation of energy coupling between Ca2+, calmodulin, skeletal muscle myosin light chain kinase, and kinase substrates. J Biol Chem 259: 10949–10955, 1984

    Google Scholar 

  74. VanBerkum MFA, Means AR: Three amino acid substitutions in domain I of calmodulin prevent the activation of chicken smooth muscle myosin light chain kinase. J Biol Chem 266: 21488–21495, 1991

    Google Scholar 

  75. Gao ZH, Krebs J, VanBerkum MFA, Tang W-J, Maune JF, Means AR, Stull JT, Beckingham K: Activation of four enzymes by two series of calmodulin mutants with point mutations in individual Ca2+ binding sites. J Biol Chem 268: 20096–20104, 1993

    Google Scholar 

  76. Walsh MP: Calmodulin-dependent myosin light chain kinases. Cell Calcium 2: 333–352, 1981

    Google Scholar 

  77. Olson NJ, Pearson RB, Needleman DS, Hurwitz MY, Kemp BE, Means AR: Regulatory and structural motifs of chicken gizzard myosin light chain kinase. Proc Natl Acad Sci USA 87: 2284–2288, 1990

    Google Scholar 

  78. Gallagher PJ, Herring BP, Griffin SA, Stull JT: Molecular characterization of a mammalian smooth muscle myosin light chain kinase. J Biol Chem 266: 23936–23944, 1991

    Google Scholar 

  79. Kobayashi H, Inoue A, Mikawa T, Kuwayama H, Hotta Y, Masaki T, Ebashi S: Isolation of cDNA for bovine stomach 155 kDa protein exhibiting myosin light chain kinase activity. J Biochem (Tokyo) 112: 786–791, 1992

    Google Scholar 

  80. Pearson RB, Jakes R, John M, Kendrick-Jones J, Kemp BE: Phosphorylation site sequence of smooth muscle myosin light chain (Mr=20,000). FEBS Lett 168: 108–112, 1984

    Google Scholar 

  81. Kemp BE, Pearson RB, House C: Role of basic residues in the phosphorylation of synthetic peptides by myosin light chain kinase. Proc Natl Acad Sci USA 80: 7471–7475, 1983

    Google Scholar 

  82. Kemp BE, Pearson RB: Spatial requirements for location of basic residues in peptide substrates for smooth muscle myosin light chain kinase. J Biol Chem 260: 3355–3359, 1985

    Google Scholar 

  83. Pearson RB, Misconi LY, Kemp BE: Smooth muscle myosin kinase requires residues on the COOH-terminal side of the phosphorylation site. J Biol Chem 261: 25–27, 1986

    Google Scholar 

  84. Hanks SK, Quinn AM, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52, 1988

    Google Scholar 

  85. Kamps MP, Taylor SS, Sefton BM: Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites. Nature 310: 589–592, 1984

    Google Scholar 

  86. Benian GM, Kiff JE, Neckleman N, Moerman DG, Waterston RH: Sequence of an unusually large protein implicated in regulation of myosin activity inC. elegans. Nature 342: 45–50, 1989

    Google Scholar 

  87. Labeit S, Barlow DP, Gautel M, Gibson T, Holt J, Hsieh C-L, Francke U, Leonard K, Wardale J, Whiting A, Trinick J: A regular pattern of two types of 100-residue motif in the sequence of titin. Nature 345: 273–276, 1990

    Google Scholar 

  88. Herring BP, Stull JT, Gallagher PJ: Domain characterization of rabbit skeletal muscle myosin light chain kinase. J Biol Chem 265: 1724–1730, 1990

    Google Scholar 

  89. Herring BP, Fitzsimmons DP, Stull JT, Gallagher PJ: Acidic residues comprise part of the myosin light chain-binding site on skeletal muscle myosin light chain kinase. J Biol Chem 265: 16588–16591, 1990

    Google Scholar 

  90. O'Neil KT, DeGrado WF: How calmodulin binds its targets: sequence independent recognition of amphiphilic α-helices. Trends Biochem Sci 15: 59–64, 1990

    Google Scholar 

  91. Lukas TJ, Burgess WH, Prendergast FG, Lau W, Watterson DM: Calmodulin binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry 25: 1458–1464, 1986

    Google Scholar 

  92. Kemp BE, Pearson RB, Guerriero Jr V, Bagchi IC, Means AR: The calmodulin binding domain of chicken smooth muscle myosin light chain kinase contains a pseudosubstrate sequence. J Biol Chem 262: 2542–2548, 1987

    Google Scholar 

  93. Bagchi IC, Huang Q, Means AR: Identification of amino acids essential for CaM binding and activation of smooth muscle myosin light chain kinase. J Biol Chem 267: 3024–3029, 1992

    Google Scholar 

  94. Bagchi IC, Kemp BE, Means AR: Myosin light chain kinase structure function analysis using bacterial expression. J Biol Chem 264: 15843–15849, 1989

    Google Scholar 

  95. Pearson RB, Ito M, Morrice NA, Smith AJ, Condron R, Wettenhall REH, Kemp BE, Hartshorne DJ: Proteolytic cleavage sites in smooth muscle myosin-light-chain kinase and their relation to structural and regulatory domains. Eur J Biochem 200: 723–730, 1991

    Google Scholar 

  96. Ikebe M, Stepinska M, Kemp BE, Means AR, Hartshorne DJ: Proteolysis of smooth muscle myosin light chain kinase. Formation of inactive and calmodulin-independent fragments. J Biol Chem 262: 13828–13834, 1987

    Google Scholar 

  97. Pearson RB, Wettenhall REH, Means AR, Hartshorne DJ, Kemp BE: Autoregulation of enzymes by pseudosubstrate prototopes: myosin light chain kinase. Science 241: 970–973, 1988

    Google Scholar 

  98. Ikebe M, Reardon S, Fay FS: Primary structure required for the inhibition of smooth muscle myosin light chain kinase. FEBS Lett 312: 245–248, 1992

    Google Scholar 

  99. Ito M, Guerriero Jr V, Chen X, Hartshorne DJ: Definition of the inhibitory domain of smooth muscle myosin light chain kinase by site-directed mutagenesis. Biochemistry 30: 3498–3503, 1991

    Google Scholar 

  100. Bagchi IC, Kemp BE, Means AR: Intrasteric regulation of myosin light chain kinase: The pseudosubstrate prototope binds to the active site. Mol Endocrinol 6: 621–626, 1991

    Google Scholar 

  101. Herring BP: Basic residues are important for Ca2+/calmodulin-binding and activation but not autoinhibition of rabbit skeletal muscle myosin light chain kinase. J Biol Chem 266: 11838–11841, 1991

    Google Scholar 

  102. Fitzsimmons DP, Herring BP, Stull JT, Gallagher PJ: Identification of basic residues involved in activation and calmodulin binding of rabbit smooth muscle myosin light chain kinase. J Biol Chem 267: 23903–23909, 1992

    Google Scholar 

  103. Shoemaker MO, Lau W, Shattuck RL, Kwiatkowski AP, Matrisian PE, Guerra-Santos L, Wilson E, Lukas TJ, Van Eldik LJ, Watterson DM: Use of DNA sequence and mutant analyses and antisense oligodeoxynucleotides to examine the molecular basis of nonmuscle myosin light chain kinase autoinhibition, calmodulin recognition, and activity. J Cell Biol 111: 1107–1125, 1990

    Google Scholar 

  104. Knighton DR, Pearson RB, Sowadski JM, Means AR, Ten Eyck LF, Taylor SS, Kemp BE: Structural basis of the intrasteric regulation of myosin light chain kinases. Science 258: 130–135, 1992

    Google Scholar 

  105. Knighton DR, Zheng J, Ten Eyck LF, Ashford VA, Xuong N-H, Taylor SS, Sowadski JM: Crystal structure of the catalytic subunit of cAMP-dependent protein kinase. Science 253: 407–414, 1991

    Google Scholar 

  106. Knighton DR, Zheng J, Ten Eyck LF, Ashford VA, Xuong N-H, Taylor SS, Sowadski JM: Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 414–420, 1991

    Google Scholar 

  107. Sellers JR, Spudich JA, Sheetz MP: Light chain phosphorylation regulates the movement of smooth muscle myosin on actin filaments. J Cell Biol 101: 1897–1902, 1985

    Google Scholar 

  108. Umemoto S, Sellers JR: Characterization ofin vitro motility assays using smooth muscle and cytoplasmic myosins. J Biol Chem 265: 14864–14869, 1990

    Google Scholar 

  109. Walsh MP, Hinkins S, Dabrowska R, Hartshorne DJ: Purification of smooth muscle myosin light chain kinase. Methods Enzymol 99: 279–288, 1985

    Google Scholar 

  110. Ikebe M, Hartshorne DJ: Proteolysis of smooth muscle myosin byStaphylococcus aureus protease: Preparation of heavy meromyosin and subfragment 1 with intact 20,000-dalton light chains. Biochemistry 24: 2380–2386, 1985

    Google Scholar 

  111. Walsh MP: Calcium-dependent mechanisms of regulation of smooth muscle contraction. Biochem Cell Biol 69: 771–800, 1991

    Google Scholar 

  112. Sellers JR, Pato MD, Adelstein RS: Reversible phosphorylation of smooth muscle myosin, heavy meromyosin, and platelet myosin. J Biol Chem 256: 13137–13142, 1981

    Google Scholar 

  113. Rembold CM: Regulation of contraction and relaxation in arterial smooth muscle. Hypertension 20: 129–137, 1992

    Google Scholar 

  114. Kamm KE, Stull JT: Activation of smooth muscle contraction: Relation between myosin phosphorylation and stiffness. Science 232: 80–82, 1986

    Google Scholar 

  115. Miller-Hance WC, Miller JR, Wells JN, Stull JT, Kamn KE: Biochemical events associated with activation of smooth muscle contraction. J Biol Chem 263: 13979–13982, 1988

    Google Scholar 

  116. Morgan JP, Morgan MG: Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol 351: 155–167, 1984

    Google Scholar 

  117. Rembold CM, Murphy RA: Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res 63: 593–603, 1988

    Google Scholar 

  118. Hai C-M, Murphy RA: Ca2+, crossbridge phosphorylation, and contraction. Annu Rev Physiol 51: 285–298, 1989

    Google Scholar 

  119. Gerthoffer WT: Dissociation of myosin phosphorylation and active tension during muscarinic stimulation of tracheal smooth muscle. J Pharmacol Exp Ther 240: 8–15, 1987

    Google Scholar 

  120. Tansey MG, Hori M, Karaki H, Kamm KE, Stull JT: Okadaic acid uncouples myosin light chain phosphorylation and tension in smooth muscle. FEBS Lett 270: 219–221, 1990

    Google Scholar 

  121. McDaniel NL, Chen XL, Singer HA, Murphy RA, Rembold CM: Nitrovasodilators relax arterial smooth muscle by decreasing [Ca2+]i and uncoupling stress from myosin phosphorylation. Am J Physiol 263: C461-C467, 1972

    Google Scholar 

  122. D'Angelo EKG, Singer HA, Rembold CM: Magnesium relaxes arternal smooth muscle by decreasing intracellular Ca2+ without changing intracellular Mg2+. J Clin Invest 89: 1988–1994, 1992

    Google Scholar 

  123. Bárárny M, Bárány K: Dissociation of relaxation and myosin light chain dephosphorylation in porcine uterine muscle. Arch Biochem Biophys 305: 202–204, 1993

    Google Scholar 

  124. Hidaka H, Naka M, Yamaki T: Effect of novel specific myosin light chain kinase inhibitors on Ca2+-activated Mg2+-ATPase of chicken gizzard actomyosin. Biochem Biophys Res Commun 90: 694–699, 1979

    Google Scholar 

  125. Hidaka H, Yamaki T, Naka M, Tanaka T, Hayashi H, Kobayashi R: Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol Pharmacol 17: 66–72, 1980

    Google Scholar 

  126. Sheterline P: Trifluoperazine can distinguish between myosin light chain kinase-linked and troponin C-linked control of actomyosin interaction by Ca2+. Biochem Biophys Res Commun 93: 194–200, 1980

    Google Scholar 

  127. Barron JT, Bárány M, Bárány K, Storti RV: Reversible phosphorylation and dephosphorylation of the 20,000-dalton light chain of myosin during the contraction-relaxation-contraction cycle of arterial smooth muscle. J Biol Chem 255: 6238–6244, 1980

    Google Scholar 

  128. Kanamori M, Naka M, Asano M, Hidaka H: Effects of N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide and other calmodulin antagonists (calmodulin interacting agents) on calcium-induced contraction of rabbit aortic strips. J Pharmacol Exp Ther 217: 494–499, 1981

    Google Scholar 

  129. Asano M, Suzuki Y, Hidaka H: Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J Pharmacol Exp Ther 220: 191–196, 1982

    Google Scholar 

  130. Silver PJ, Stull JT: Effects of the calmodulin antagonist, fluphenazine, on phosphorylation of myosin and phosphorylase in intact smooth muscle. Mol Pharmacol 23: 665–670, 1983

    Google Scholar 

  131. Crosby ND, Diamond J: Effects of phenothiazines on calcium induced contractions of chemically skinned smooth muscle. Proc West Pharmacol Soc 23: 335–338, 1980

    Google Scholar 

  132. Hidaka H, Asano M, Iwadare S, Matsumoto I, Totsuka T, Aoki M: A novel vascular relaxing agent, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide which affects vascular smooth muscle actomyosin. J Pharmacol Exp Ther 207: 8–15, 1978

    Google Scholar 

  133. Hidaka H, Yamaki T, Totsuka T, Asano M: Selective inhibitors of Ca2+-binding modulator of phosphodiesterase produce vascular relaxation and inhibit actin-myosin interaction. Mol Pharmacol 15: 49–59, 1979

    Google Scholar 

  134. Sherry JMF, Gorecka A, Aksoy MO, Dabrowska R, Hartshorne DJ: Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry 17: 4411–4418, 1978

    Google Scholar 

  135. Cassidy PS, Hoar PE, Kerrick WGL: Irreversible thiophosphorylation and activation of tension in functionally skinned rabbit ileum strips by [35S]ATPγS. J Biol Chem 254: 11148–11153, 1979

    Google Scholar 

  136. Walsh MP, Dabrowska R, Hinkins S, Hartshorne DJ: Calcium-independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestions of the Ca2+-dependent enzyme, purification and characterization. Biochemistry 21: 1919–1925, 1982

    Google Scholar 

  137. Walsh MP, Bridenbaugh R, Kerrick WGL, Hartshorne DJ: Gizzard Ca2+-independent myosin light chain kinase: Evidence in favor of the phosphorylation theory. Fed Proc 42: 45–50, 1983

    Google Scholar 

  138. Walsh MP, Bridenbaugh R, Harshorne DJ, Kerrick WGL: Phosphorylation dependent activated tension in skinned gizzard muscle fibers in the absence of Ca2+. J Biol Chem 257: 5987–5990, 1982

    Google Scholar 

  139. Gagelmann M, Mrwa U, Boström S, Rüegg JC, Hartshorne D: Effect of Ca2+-independent myosin light chain kinase on different skinned smooth muscle fibers. Pflügers Arch 401: 107–109, 1984

    Google Scholar 

  140. Mrwa U, Güth K, Rüegg JC, Paul RJ, Boström S, Barsotti R, Hartshorne D: Mechanical and biochemical characterization of the contraction elicited by a calcium-independent myosin light chain kinase in chemically skinned smooth muscle. Experientia 41: 1002–1006, 1985

    Google Scholar 

  141. Kanoh S, Ito M, Niwa E, Kawano Y, Hartshorne DJ: Actin binding peptide from smooth muscle myosin light chain kinase. Biochemistry 32: 8902–8907, 1993

    Google Scholar 

  142. Sellers JR, Pato MD: The binding of smooth muscle myosin light chain kinase and phosphatases to actin and myosin. J Biol Chem 259: 7740–7746, 1984

    Google Scholar 

  143. Kargacin GJ, Ikebe M, Fay FS: Peptide modulators of myosin light chain kinase affect smooth muscle cell contraction. Am J Physiol 259: C315-C324, 1990

    Google Scholar 

  144. Itoh T, Ikebe M, Kargacin GJ, Harshorne DJ, Kemp BE, Fay FS: Effects of modulators of MLCK activity in single smooth muscle cells. Nature 338: 164–167, 1989

    Google Scholar 

  145. Rüegg JC, Zeugner C, Strauss JD, Paul RJ, Kemp B, Chem M, Li A-Y, Harshorne DJ: A calmodulin-binding peptide relaxes skinned muscle from guinea-pig taenia coli. Pflügers Arch 414: 282–285, 1989

    Google Scholar 

  146. Shibata S, Ishida Y, Kitano H, Ohizumi Y, Habon J, Tsukitani Y, Kikuchi H: Contractile effects of okadaic acid, a novel ionophore-like substance from black sponge, on isolated smooth muscles under the condition of Ca deficiency. J Pharmacol Exp Ther 223: 135–143, 1982

    Google Scholar 

  147. Obara K, Takai A, Rüegg JC, DeLanerolle P: Okadaic acid, a phosphatase inhibitor, produces a Ca2+ and calmodulin-independent contraction of smooth muscle. Pflügers Arch 414: 134–138, 1989

    Google Scholar 

  148. Hartshorne DJ, Ishihara H, Karaki H, Ozaki H, Sato K, Hori M, Watabe S: Okadaic acid and calyculin A: effects on smooth muscle systems. Adv Prot Phosphatases 5: 219–231, 1989

    Google Scholar 

  149. Takai A, Bialojan C, Troschka M, Rüegg JC: Smooth muscle myosin phosphatase inhibition and force enhancement by black sponge toxin. FEBS Lett 217: 81–84, 1987

    Google Scholar 

  150. Gong MC, Cohen P, Kitazawa T, Ikebe M, Masuo M, Somlyo AP, Somlyo AV: Myosin light chain phosphatase activities and the effects of phosphatase inhibitors in tonic and phasic smooth muscle. J Biol Chem 267: 14662–14668, 1992

    Google Scholar 

  151. Hanson PI, Schulman H: Neuronal Ca2+/calmodulin-dependent protein kinases. Annu Rev Biochem 61: 559–601, 1992

    Google Scholar 

  152. Colbran RJ: Regulation and role of brain calcium/calmodulin-dependent protein kinase II. Neurochem Int 21: 469–497, 1992

    Google Scholar 

  153. Kuret J, Schulman H: Mechanism of autophosphorylation of the multifunctional Ca2+/calmodulin-dependent protein kinase. J Biol Chem 260: 6427–6433, 1985

    Google Scholar 

  154. Schulman H: The multifunctional Ca2+/calmodulin-dependent protein kinase. Adv Second Messenger Phosphoprotein Res 22: 39–112, 1988

    Google Scholar 

  155. Yamauchi T, Ohsako S, Deguchi T: Expression and characterization of calmodulin-dependent protein kinase II from cloned cDNAs in Chinese Hamster Ovary Cells. J Biol Chem 264: 19108–19116, 1989

    Google Scholar 

  156. Bennett MK, Kennedy MB: Deduced primary structure of the β subunit of brain type II Ca2+/calmodulin-dependent protein kinase determined by molecular cloning. Proc Natl Acad Sci USA 84: 1794–1798, 1987

    Google Scholar 

  157. Bulleit RF, Bennett MK, Molloy SS, Hurley JB, Kennedy MB: Conserved and variable regions in the subunits of brain type II Ca2+/calmodulin-dependent protein kinase. Neuron 1: 63–72, 1988

    Google Scholar 

  158. Hanley RM, Means AR, Ono T, Kemp BE, Burgin KE, Waxham N, Kelly PT: Functional analysis and expression of cDNA encoding the 50 kDa subunit of rat neuronal calmodulin kinase II. Science 237: 293–297, 1987

    Google Scholar 

  159. Lin CR, Kapiloff MS, Durgerian S, Tatemoto K, Russo AF, Hanson P, Schulman H, Rosenfeld MG: Molecular cloning of a brain-specific calcium/calmodulin-dependent protein kinase. Proc Natl Acad Sci USA 84: 5962–5966, 1987

    Google Scholar 

  160. Tobimatsu T, Fujisawa H: Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem 264: 17907–17912, 1989

    Google Scholar 

  161. Tobimatsu T, Kameshita I, Fujisawa H: Molecular cloning of the cDNA encoding the third polypeptide (γ) of brain calmodulin-dependent protein kinase II. J Biol Chem 263: 16082–16086, 1988

    Google Scholar 

  162. Yamagata Y, Czernik AJ, Greengard P: Active catalytic fragment of Ca2+/calmodulin-dependent protein kinase II: purification, characterization and structural analysis. J Biol Chem 266: 15391–15397, 1991

    Google Scholar 

  163. Hanley RM, Means AR, Kemp BE, Shenolikar S: Mapping of calmodulin-binding domain of Ca2+/calmodulin-dependent protein kinase II from rat brain. Biochem Biohys Res Commun 152: 122–128, 1988

    Google Scholar 

  164. Payne ME, Fong Y-L, Ono T, Colbran RJ, Kemp BE, Soderling TR, Means AR: Calcium/calmodulin-dependent protein kinase II: characterization of distinct calmodulin-binding and inhibitory domains. J Biol Chem 263: 7190–7195, 1988

    Google Scholar 

  165. Kelly PT, Weinberger RP, Waxham MN: Active site-directed inhibition of Ca2+/calmodulin-dependent protein kinase II by a bifunctional calmodulin-binding peptide. Proc Natl Acad Sci USA 85: 4991–4995, 1988

    Google Scholar 

  166. Malinow R, Schulman H, Tsien RW: Inhibition of postsynaptic PKC or CaM KII blocks induction but not expression of LTP. Science 245: 862–866, 1989

    Google Scholar 

  167. Waldmann R, Hanson PI, Schulman H: Multifunctional Ca2+/calmodulin-dependent protein kinase made Ca2+ independent for functional studies. Biochemistry 29: 1679–1684, 1990

    Google Scholar 

  168. Hagiwara T, Ohsako S, Yamauchi T: Studies on the regulatory domain of Ca2+/calmodulin-dependent protein kinase II by expression of mutated cDNAs inEscherichia coli. J Biol Chem 266: 16401–16408, 1991

    Google Scholar 

  169. Patton BL, Miller SG, Kennedy MB: Activation of type II calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain. J Biol Chem 265: 11204–11212, 1990

    Google Scholar 

  170. Miller SG, Kennedy MB: Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+ triggered molecular switch. Cell 44: 861–870, 1986

    Google Scholar 

  171. Hashimoto Y, Schworer CM, Colbran RJ, Soderling TR: Autophosphorylation of Ca2+/calmodulin-dependent protein kinase II: effects on total and Ca2+-independent activities and kinetic parameters. J Biol Chem 262: 8051–8055, 1987

    Google Scholar 

  172. Lou LL, Schulman H: Distinct autophosphorylation sites sequentially produce autonomy and inhibition of the multifunctional Ca2+/calmodulin-dependent protein kinase. J Neurosci 9: 2020–2032, 1989

    Google Scholar 

  173. Lickteig R, Shenolikar S, Denner L, Kelly PT: Regulation of Ca2+/calmodulin-dependent protein kinase II by Ca2+/calmodulin-independent autophosphorylation. J Biol Chem 263: 19232–19239, 1988

    Google Scholar 

  174. Colbran RJ, Fong Y-L, Schworer CM, Soderling TR: Regulatory interactions of the calmodulin-binding, inhibitory and autophosphorylation domains of Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 263: 18145–18151, 1988

    Google Scholar 

  175. Colbran RJ, Smith MK, Fong Y-L, Schworer CM, Soderling TR: Regulatory domain of calcium/calmodulin-dependent protein kinase II: mechanism of inhibition and regulation by phosphorylation. J Biol Chem 264: 4800–4804, 1989

    Google Scholar 

  176. Lai Y, Nairn AC, Gorelick F, Greengard P: Ca2+/calmodulin-dependent protein, kinase II: Identification of autophosphorylation sites responsible for generation of Ca2+/calmodulin-independence. Proc Natl Acad Sci USA 84: 5710–5714, 1987

    Google Scholar 

  177. Miller SG, Patton BL, Kennedy MB: Sequences of autophosphorylation sites in neuronal type II CaM kinase that control Ca2+-independent activity. Neuron 1: 593–604, 1988

    Google Scholar 

  178. Lai Y, Nairn AC, Greengard P: Autophosphorylation reversibly regulates the Ca2+/calmodulin dependence of Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 83: 4253–4257, 1986

    Google Scholar 

  179. Saitoh T, Schwartz JH: Phosphorylation-dependent subcellular translocation of a Ca2+/calmodulin-dependent protein kinase produces an autonomous enzyme inAplysia neurons. J Cell Biol 100: 835–842, 1985

    Google Scholar 

  180. Lou LL, Lloyd SJ, Schulman H: Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an antonomous enzyme. Proc Natl Acad Sci USA 83: 9497–9501, 1986

    Google Scholar 

  181. Schworer CM, Colbran RJ, Soderling TR: Reversible generation of a Ca2+-independent form of Ca2+ (calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem 261: 8581–8584, 1986

    Google Scholar 

  182. Fong Y-L, Taylor WL, Means AR, Soderling TR: Studies of the regulatory mechanism of Ca2+/calmodulin-dependent protein kinase II: mutation of threonine 286 to alanine and aspartate. J Biol Chem 264: 16759–16763, 1989

    Google Scholar 

  183. Hanson PI, Kapiloff MS, Lou LL, Rosenfeld MG, Schulman H: Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron 3: 59–70, 1989

    Google Scholar 

  184. Waxham MN, Aronowski J, Westgate SA, Kelly PT: Mutagenesis of Thr-286 in monomeric Ca2+/calmodulin-dependent protein kinase II eliminates Ca2+/calmodulin-independent activity. Proc Natl Acad Sci USA 87: 1273–1277, 1990

    Google Scholar 

  185. Ohsako S, Nakazawa H, Sekihara S, Ikai A, Yamauchi T: Role of threonine-286 as autophosphorylation site for appearance of Ca2+-independent activity of calmodulin-dependent protein kinase II α subunit. J Biochem (Tokyo) 109: 137–143, 1991

    Google Scholar 

  186. Gorelick FS, Wang JKT, Lai Y, Nairn AC, Greengard P: Autophosphorylation and activation of Ca2+/calmodulin-dependent protein-kinase II in intact nerve terminals. J Biol Chem 263: 17209–17212 1988

    Google Scholar 

  187. Fukunaga K, Rich DP, Soderling TR: Generation of the Ca2+-independent form of Ca2+/calmodulin-dependent protein kinase II in cerebellar granule cells. J Biol Chem 264: 21830–21836, 1989

    Google Scholar 

  188. MacNicol M, Jefferson AB, Schulman H: Ca2+/calmodulin kinase is activated by the phosphatidylinositol signalling pathway and becomes Ca2+-independent in PC12 cells. J Biol Chem 265: 18055–18058, 1990

    Google Scholar 

  189. Jefferson AB, Travis SM, Schulman H: Activation of multifunctional Ca2+/calmodulin-dependent protein kinase in GH3 cells. J Biol Chem 266: 1484–1490, 1991

    Google Scholar 

  190. Ocorr KA, Schulman H: Activation of multifunctional Ca2+/calmodulindependent protein kinase in intact hippocampal slices. Neuron 6: 907–914, 1991

    Google Scholar 

  191. Katoh T, Fujisawa H: Calmodulin-dependent protein kinase II. Kinetic studies on the interaction with substrates and calmodulin. Biochim Biophys Acta 1091: 205–212, 1991

    Google Scholar 

  192. Stull JT, Nunnally MH, Michnoff CH: Calmodulin-dependent protein kinases. The Enzymes 17: 113–166, 1986

    Google Scholar 

  193. VanBerkum MFA, George SE, Means AR: Calmodulin activation of target enzymes. Consequences of deletions in the central helix. J Biol Chem 265: 3750–3756, 1990

    Google Scholar 

  194. Weber PC, Lukas TJ, Craig TA, Wilson E, King MM, Kwiatkowski AP, Watterson DM: Computational and site-specific mutagenesis analyses of the asymmetric charge distribution on calmodulin. Protein Struct Funct Genet 6: 70–85, 1989

    Google Scholar 

  195. Pearson RB, Woodgett JR, Cohen P, Kemp BE: Substrate, specificity of a multifunctional calmodulin-dependent protein kinase. J Biol Chem. 260: 14471–14476, 1985

    Google Scholar 

  196. Kennelly PJ, Krebs EG: Consensus sequences as substrate specficity determinants for protein kinases and protein phosphatases. J Biol Chem 266: 15555–15558, 1991

    Google Scholar 

  197. Ikebe M, Reardon S: Phosphorylation of smooth myosin light chain kinase by smooth muscle Ca2+/calmodulin-dependent multifunctional protein kinase. J Biol Chem 265: 8975–8978, 1990

    Google Scholar 

  198. Ikebe M, Reardon S: Phosphorylation of smooth muscle caldesmon by calmodulin-dependent protein kinase II. Identification of the phosphorylation sites. J Biol Chem 265: 17607–17612, 1990

    Google Scholar 

  199. Winder SJ, Allen BG, Fraser ED, Kang H-M, Kargacin GJ, Walsh MP: Calponin phosphorylationin vitro and in intact muscle. Biochem J 296: 827–836, 1993

    Google Scholar 

  200. Himpens B, Kitazawa T, Somlyo AP: Agonist-dependent modulation of Ca2+ sensitivity in rabbit pulmonary artery smooth muscle. Pflügers Arch 417: 21–28, 1990

    Google Scholar 

  201. Kitazawa T, Somlyo AP: Desensitization and muscarnic re-sensitization of force and myosin light chain phosphorylation to cytoplasmic Ca2+ in smooth muscle. Biochem Biophys Res Commun 172: 1291–1297, 1990

    Google Scholar 

  202. Stull JC, Hsu L-C, Tansey MG, Kamm KE: Myosin light chain kinase phosphorylation in tracheal smooth muscle J Biol Chem 265: 16683–16690, 1990

    Google Scholar 

  203. Tang D-C, Stull JT, Kubota Y, Kamm KE: Regulation of the Ca2+ dependence of smooth muscle contraction. J Biol Chem 267: 11839–11845, 1992

    Google Scholar 

  204. Tansey MG, Word RA, Hidaka H, Singer HA, Schworer CM, Kamm KE, Stull JT: Phosphorylation of myosin light chain, kinase by the multifunctional calmodulin-dependent protein kinase II in smooth muscle cells. J Biol Chem 267: 12511–12516, 1992

    Google Scholar 

  205. Sobue K, Muramoto Y, Fujita M, Kakiuchi S: Purification of a calmodulinbinding protein from chicken gizzard that interacts with F-actin. Proc Natl Acad Sci USA 78: 5652–5655, 1981

    Google Scholar 

  206. Graceffa P: Evidence for interaction between smooth muscle tronomyosin and caldesmon. FEBS Lett 218: 139–142, 1987

    Google Scholar 

  207. Ikebe M, Reardon S: Binding of caldesmon to smooth muscle myosin. J Biol Chem 263: 3055–3058, 1988

    Google Scholar 

  208. Bretcher A, Lynch W: Identification and localization of immunoreactive forms of caldesmon in smooth and non-muscle cells: A comparison with the distributions of tropomyosin and α-actinin. J Cell Biol 100: 1656–1663, 1985

    Google Scholar 

  209. Fürst DO, Cross RA, DeMey J, Small JV: Caldesmon is an elongated, flexible molecule localized in the actomyosin domains of smooth muscle. EMBO J 5: 251–257, 1986

    Google Scholar 

  210. Haeberle JR, Hathaway DR, Smith CL: Caldesmon content of mammalian smooth muscles. J Muscle Res Cell Motil 13: 81–89, 1992

    Google Scholar 

  211. Hayashi K, Kanda K, Kimizuka F, Kato I, Sobue K: Primary structure and functional expression ofh-caldesmon complementary DNA. Biochem Biophys Res Commun 164: 503–511, 1989

    Google Scholar 

  212. Bryan J, Imai M, Lee R, Moore P, Cook RG, Lin W-G: Cloning and expression of a smooth muscle caldesmon. J Biol Chem 264: 13873–13879, 1989

    Google Scholar 

  213. Hayashi K, Fujio Y, Kato I, Sobue K: Structural and functional relationships betweenh- andl-caldesmons. J Biol Chem 266: 355–361, 1991

    Google Scholar 

  214. Bretscher A: Smooth muscle, caldesmon Rapid purification and F-actin cross-linking properties. J Biol Chem 259: 12873–12880, 1984

    Google Scholar 

  215. Graceffa P, Wang C-LA, Stafford WF: Caldesmon. Molecular weight and subunit composition by analytical ultracentrifugation. J Biol Chem 263: 14196–14202, 1988

    Google Scholar 

  216. Lynch WP, Riseman WM, Bretscher A: Smooth muscle caldesmon is an extended flexible monomeric protein in solution that can readily undergo reversible intra-and intermolecular sulfhydryl cross-linking. J Biol Chem 262: 7429–7437, 1987

    Google Scholar 

  217. Sobue K, Sellers JR: Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J Biol Chem 266: 12115–12118, 1991

    Google Scholar 

  218. Marston SB, Redwood CS: The molecular anatomy of caldesmon. Biochem J 279: 1–16, 1991

    Google Scholar 

  219. Mills JS, Walsh MP, Nemcek K, Johnson JD: Biologically active fluorescent derivatives of spinach calmodulin that report calmodulin target protein binding. Biochemistry 27: 991–996, 1988

    Google Scholar 

  220. Clark T, Ngai PK, Sutherland C, Gröschel-Stewart U, Walsh MP: Vascular smooth muscle caldesmon. J Biol Chem 261: 8028–8035, 1986

    Google Scholar 

  221. Sobue K, Morimoto K, Inui M, Kanda K, Kakiuchi S: Control of actin-myosin interaction of gizzard smooth muscle by calmodulin and caldesmon-linked flip-flop mechanism. Biomed Res 3: 188–196, 1982

    Google Scholar 

  222. Ngai PK, Walsh MP: Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem 259: 13656–13659, 1984

    Google Scholar 

  223. Ngai PK, Walsh MP: Properties of caldesmon isolated from chicken gizzard. Biochem J 230: 695–707, 1985

    Google Scholar 

  224. Grand RJA, Perry SV, Weeks RA: Troponin C-like proteins (calmodulins) from mammalian smooth muscle and other tissues. Biochem J 177: 521–529, 1979

    Google Scholar 

  225. Rüegg JC, Pfitzer G, Zimmer M, Hofmann F: The calmodulin fraction responsible for contraction in an intestinal smooth muscle. FEBS Lett 170: 383–386, 1984

    Google Scholar 

  226. Wang C-LA, Wang L-WC, Xu S, Lu RC, Saavedra-Alanis V, Bryan J: Localization of the calmodulin- and the actin-binding sites of caldesmon. J Biol Chem 266: 9166–9172, 1991

    Google Scholar 

  227. Zhan Q, Wong SS, Wang C-LA: A calmodulin-binding peptide of caldesmon. J Biol Chem 266: 21810–21814, 1991

    Google Scholar 

  228. Wang C-LA, Wang L-WC, Lu RC: Caldesmon has two calmodulin-binding domains. Biochem Biophys Res Commun 162: 746–752, 1989

    Google Scholar 

  229. Mani RS, McCubbin WD, Kay CM: Calcium-dependent regulation of caldesmon by an 11-kDa smooth muscle calcium-binding protein, caltropin. Biochemistry 31: 11896–11901, 1992

    Google Scholar 

  230. Wang C-LA, Chalovich JM, Graceffa P, Lu RC, Mabuchi K, Stafford WF: A long helix from the central region of smooth muscle caldesmon. J Biol Chem 266: 13958–13963, 1991

    Google Scholar 

  231. Sutherland C, Walsh MP: Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin. J Biol Chem 264: 578–583, 1989

    Google Scholar 

  232. Bartegi A, Fattoum A, Derancourt J, Kassab R: Characterization of the carboxyl-terminal 10-kDa cyanogen bromide fragment of caldesmon as an actin-calmodulin binding region. J Biol Chem 265: 15231–15238, 1990

    Google Scholar 

  233. Mornet D, Audemard E, Derancourt J: Identification of a 15 kilodalton actin binding region on gizzard caldesmon probed by chemical crosslinking. Biochem Biophys Res Commun 154: 564–571, 1988

    Google Scholar 

  234. Hemric ME, Chalovich JM: Characterization of caldesmon binding to myosin. J Biol Chem 265: 19672–19678, 1990

    Google Scholar 

  235. Hemric ME, Lu FWM, Shrager R, Carey J, Chalovich JM: Reversal of caldesmon binding to myosin with calcium-calmodulin or by phosphorylating caldesmon. J Biol Chem 268: 15305–15311, 1993

    Google Scholar 

  236. Adams S, DasGupta G, Chalovich JM, Reisler E: Immunochemical evidence for the binding of caldesmon to the NH2-terminal segment of actin. J Biol Chem 265: 19652–19657, 1990

    Google Scholar 

  237. Walsh MP: Smooth muscle caldesmon. Prog Clin Biol Res 327: 127–140, 1990

    Google Scholar 

  238. Szpacenko A, Dabrowska R: Functional domain of caldesmon. FEBS Lett 202: 182–186, 1986

    Google Scholar 

  239. Hemric ME, Chalovich JM: Effect of caldesmon on the ATPase activity and the binding of smooth and skeletal myosin subfragments to actin. J Biol Chem 263: 1878–1885, 1988

    Google Scholar 

  240. Horiuchi KY, Chacko S: Caldesmon inhibits the cooperative turning-on of the smooth muscle heavy meromyosin by tropomyosin-actin. Biochemistry 28: 9111–9116, 1989

    Google Scholar 

  241. Velaz L, Ingraham RH, Chalovich JM: Dissociation of the effect of caldesmon on the ATPase activity and on the binding of smooth muscle heavy meromyosin to actin by partial digestion of caldesmon. J Biol Chem 265: 2929–2934, 1990

    Google Scholar 

  242. Marston SB, Redwood CS: Inhibition of actin-tropomyosin activation of myosin MgATPase activity by the smooth muscle regulatory protein caldesmon. J Biol Chem 267: 16796–16800, 1992

    Google Scholar 

  243. Shirinsky VP, Biryukov KG, Hettasch JM, Sellers JR: Inhibition of the ralative movement of actin and myosin by caldesmon and calponin. J Biol Chem 267: 15886–15892, 1992

    Google Scholar 

  244. Haeberle JR, Trybus KM, Hemric ME, Warshaw DM: The effects of smooth muscle caldesmon on actin filament motility. J Biol Chem 267: 23001–23006, 1993

    Google Scholar 

  245. Pfitzer G, Zeugner C, Troschka M, Chalovich JM: Caldesmon and a 20-kDa actin-binding fragment of caldesmon inhibit tension development in skinned gizzard muscle fiber bundles. Proc Natl Acad Sci USA 90: 5904–5908, 1993

    Google Scholar 

  246. Katsuyama H, Wang C-LA, Morgan KG: Regulation of vascular smooth muscle tone by caldesmon. J Biol Chem 267: 14555–14558, 1992

    Google Scholar 

  247. Scott-Woo GC, Sutherland C, Walsh MP: Kinase activity associated with caldesmon is Ca2+/calmodulin-dependent kinase II. Biochem J 268: 367–370, 1990

    Google Scholar 

  248. Tanaka T, Ohta H, Kanda K, Tanaka T, Hidaka H, Sobue K: Phosphorylation of high-Mr caldesmon by protein kinase C modulates the regulatory function of this protein on the interaction between actin and myosin. Eur J Biochem 188: 495–500, 1990

    Google Scholar 

  249. Ikebe M, Hornick T: Determination of the phosphorylation site of smooth muscle caldesmon by protein kinase C. Arch Biochem Biophys 288: 538–542, 1991

    Google Scholar 

  250. Sutherland C, Renaux BS, McKay DJ, Walsh MP: Phosphorylation of caldesmon by smooth-muscle casein kinase II. J Muscle Res Cell Motil 15: in press

  251. Wawrzynow A, Collins JH, Bogatcheva NV, Vorotnikov AV, Gusev NB: Identification of the site phosphorylated by casein kinase II in smooth muscle caldesmon. FEBS Lett 289: 213–216, 1991

    Google Scholar 

  252. Mak AS, Carpenter M, Smillie LB, Wang JH: Phosphorylation of caldesmon by p34cdc2 kinase. Identification of phosphorylation sites. J Biol Chem 266: 19971–19975, 1991

    Google Scholar 

  253. Childs TJ, Watson MH, Sanghera JS, Campbell DL, Pelech SL, Mak AS: Phosphorylation of smooth muscle caldesmon by mitogen-activated protein (MAP) kinase and expression of MAP kinase in differentiated smooth muscle cells. J Biol Chem 267: 22853–22859, 1992

    Google Scholar 

  254. Adam LP, Gapinski CJ, Hathaway DR: Phosphorylation sequences in h-caldemon from phorbol ester-stimulated canine aortas. FEBS Lett 302: 223–226, 1992

    Google Scholar 

  255. Adam LP, Hathaway DR: Identification of mitogen-activated protein kinase phosphorylation sequences in mammalianh-caldesmon. FEBS Lett 322: 56–60, 1993

    Google Scholar 

  256. Takahashi K, Hiwada K, Kokubu T: Isolation and characterization of a 34,000-dalton calmodulin-and F-actin-binding protein from chicken gizzard smooth muscle. Biochem Biophys Res Commun 141: 20–26, 1986

    Google Scholar 

  257. Takahashi K, Abe M, Hiwada K, Kokubu T: A novel troponin T-like protein (calponin) in vascular smooth muscle: interaction with tropomyosin paracrystals. J Hypertension 6: S40-S43, 1988

    Google Scholar 

  258. Walsh MP, Carmichael JD, Kargacin GJ: Characterization and conlocal imaging of calponin in gastrointestinal smooth muscle. Am J Physiol 265: 1371–1378, 1993

    Google Scholar 

  259. Ngai PK, Scott-Woo GC, Lim MS, Sutherland C, Walsh MP: Activation of smooth muscle myosin Mg2+-ATPase by native thin filaments and actin-tropomyosin. J Biol Chem 262: 5352–5359, 1987

    Google Scholar 

  260. Winder SJ, Walsh MP: Smooth muscle calponin. Inhibition of actomyosin MgATPase and regulation by phosphorylation. J Biol Chem 265: 10148–10155, 1990

    Google Scholar 

  261. Winder SJ, Pato MD, Walsh MP: Purification and characterization of calponin phosphatase from smooth muscle. Effect of dephosphorylation on calponin function. Biochem J 286: 197–203, 1992

    Google Scholar 

  262. Gimona M, Herzog M, Vandekerckhove J, Small JV: Smooth muscle specific expression of calponin. FEBS Lett 274: 159–162, 1990

    Google Scholar 

  263. Takahashi K, Nadal-Ginard B: Molecular cloning and sequence analysis of smooth muscle calponin. J Biol Chem 266: 13284–13288, 1991

    Google Scholar 

  264. Draeger A, Gimona M, Stuckert A, Celis JE, Small JV: Calponin. Developmental isoforms and a low molecular weight variant. FEBS Lett 291: 24–28, 1991

    Google Scholar 

  265. Strasser P, Gimona M, Moessler H, Herzog M, Small JV: Mammalian calponin: Identification and expression of genetic variants. FEBS Lett 330: 13–18, 1993

    Google Scholar 

  266. Winder SJ, Sutherland C, Walsh MP: Biochemical and functional characterization of smooth muscle calponin. In: R.S. Moreland (ed). Regulation of Smooth Muscle Contraction. Plenum Press, New York, 1991, pp 37–52

    Google Scholar 

  267. Winder SJ, Walsh MP: Structural and functional characterization of calponin fragments. Biochem Int 22: 335–341, 1990

    Google Scholar 

  268. Mezgueldi M, Fattoum A, Derancourt J, Kassab R: Mapping of the functional domains in the amino-terminal region of calponin. J Biol Chem 267: 15943–15951, 1992

    Google Scholar 

  269. Vancompernolle K, Vandekerckhove J, Bubb MR, Korn ED: The interfaces of actin andAcanthamoeba actobindin. Identification of a new actin-binding motif. J Biol Chem 266: 15427–15431, 1991

    Google Scholar 

  270. Nishida W, Kitami Y, Hiwada K: cDNA cloning and mRNA expression of calponin and SM22 in rat aorta smooth muscle cells. Gene 130: 297–302, 1993

    Google Scholar 

  271. Vancompernolle K, Gimona M, Herzog M, Van Damme J, Vandekerckhove J, Small V: Isolation and sequence of a tropomyosin-binding fragment of turkey gizzard calponin. FEBS Lett 274: 146–150, 1990

    Google Scholar 

  272. Winder SJ, Walsh MP, Vasulka C, Johnson JD: Calponin-calmodulin interaction: Properties and effects on smooth and skeletal muscle actin binding and actomyosin ATPases. Biochemistry: 32: 13327–13333, 1993

    Google Scholar 

  273. Winder SJ, Sutherland C, Walsh MP: A comparison of the effects of calponin on smooth and skeletal muscle actomyosin systems in the presence and absence of caldesmon. Biochem J 288: 733–739, 1992

    Google Scholar 

  274. Horiuchi KY, Chacko S: The mechanism for the inhibition of actin-activatedATPase of smooth muscle heavy meromyosin by calponin. Biochem Biophys Res Commun 176: 1487–1493, 1991

    Google Scholar 

  275. Nishida W, Abe M, Takahashi K, Hiwada K: Do thin filaments of smooth muscle contain calponin? A new method for the preparation. FEBS Lett 268: 165–168, 1990

    Google Scholar 

  276. Miki M, Walsh MP, Hartshorne DJ: The mechanism of inhibition of the actin-activated myosin MgATPase by calponin. Biochem Biophys Res Commun 187: 867–871, 1992

    Google Scholar 

  277. Nakamura F, Mino T, Yamamoto J, Naka M, Tanaka T: Identification of the regulatory site in smooth muscle calponin that is phosphorylated by protein kinase C. J Biol Chem 268: 6194–6201, 1993

    Google Scholar 

  278. Bárány M, Rokolya A, Bárány K: Absence of calponin phosphorylation in contracting or resting arterial smooth muscle. FEBS Lett 279: 65–68, 1991

    Google Scholar 

  279. Gimona M, Sparrow MP, Strasser P, Herzog M, Small JV: Calponin and SM22 isoforms in avian and mammalian smooth muscle. Absence of phosphorylationin vivo. Eur J Biochem 205: 1067–1075, 1992

    Google Scholar 

  280. Carmichael JD, Winder SJ, Walsh MP, Kargacin GJ: Calponin and smooth muscle regulation. Can J Physiol Pharmacol: in press

  281. Rokolya A, Moreland RS: Calponin phosphorylation during endothelinl induced contraction of intact swine carotid artery. Biophys J 64: A31, 1993

    Google Scholar 

  282. Wills FL, McCubbin WD, Kay CM: Characterization of the muscle calponin and calmodulin complex. Biochemistry 32: 2321–2328, 1993

    Google Scholar 

  283. Marletta MA: Nitric oxide synthase structure and mechanism. J Biol Chem 268: 12231–12234, 1993

    Google Scholar 

  284. Lincoln TM, Cornwell TL: Towards an understanding of the mechanism of action of cyclic AMP and cyclic GMP in smooth muscle relaxation. Blood Vessels 28: 129–137, 1991

    Google Scholar 

  285. Schmidt HHHW, Lohmann SM, Walter U: The nitric oxide and cGMP signal transduction system. Biochim Biophys Acta 1178: 153–175, 1993

    Google Scholar 

  286. McPherson PS, Campbell KP: The ryanodine receptor/Ca2+ release channel. J Biol Chem 268: 13765–13768, 1993

    Google Scholar 

  287. Carafoli E: The Ca2+ pump of the plasma membrane. J Biol Chem 267: 2115–2118, 1992

    Google Scholar 

  288. Choi E-J, Xia Z, Villacres EC, Storm DR: The regulatory diversity of the mammalian adenylyl cyclases. Curr Opin Cell Biol 5: 269–273, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, M.P. Calmodulin and the regulation of smooth muscle contraction. Mol Cell Biochem 135, 21–41 (1994). https://doi.org/10.1007/BF00925958

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00925958

Key words

Navigation