Skip to main content
Log in

Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres

  • Review
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • ALLEN, D. G. (1977) On the relationship between action potential duration and tension in cat papillary muscle.Cardiovasc. Res. 11, 210–8.

    Google Scholar 

  • ALLEN, D. G. & BLINKS, J. R. (1978) Calcium transients in aequorin-injected frog cardiac muscle.Nature 273, 509–13.

    Google Scholar 

  • ALLEN, D. G. & KURIHARA, S. (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle.J. Physiol. 327, 79–94.

    Google Scholar 

  • ASHLEY, C. C. & MOISESCU, D. G. (1972) Model for the action of calcium in muscle.Nature New Biol. 237, 208–11.

    Google Scholar 

  • ASHLEY, C. C. & MOISESCU, D. G. (1975) The part played by Ca2+ in the contraction of isolated bundles of myofibrils. InCalcium Transport in Contraction and Secretion (edited by CARAFOLI, E., CLEMENTI, F., DRABIKOWSKI, W. and MARGRETH, A.), pp. 517–525. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • ASHLEY, C. C., MOISESCU, D. G. & ROSE, R. M. (1974) Kinetics of calcium during contraction: Myofibrillar and SR fluxes during a single response of a skeletal muscle fibre. InCalcium Binding Proteins (edited by DRABIKOWSKI, W., STRZELECKA-GOLASZEWSKA, H. and CARAFOLI, E.), pp. 609–642. Amsterdam: North-Holland.

    Google Scholar 

  • BARTELS, E. M., SKYDSGAARD, J. M. & STEN-KNUDSEN, O. (1979) The time course of the latency relaxation as a function of the sarcomere length in frog and mammalian muscle.Acta physiol. scand. 106, 129–37.

    Google Scholar 

  • BLINKS, J. R. (1982) The use of photoproteins as calcium indicators in cellular physiology. InTechniques in Cellular Physiology (edited by BAKER, P. F.), Vol. 1, Part 1. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • BLINKS, J. R., RÜDEL, R., & TAYLOR, S. R. (1978) Calcium transients in isolated amphibian skeletal muscle fibres: Detection with aequorin.J. Physiol. 277, 291–323.

    Google Scholar 

  • BLINKS, J. R., WIER, W. G., HESS, P. & PRENDERGAST, F. G. (1982) Measurement of Ca2+ concentrations in living cells.Prog. Biophys. molec. Biol. 40, 1–114.

    Google Scholar 

  • BRADY, A. J. (1965) Time and displacement dependence of cardiac contractility: problems in defining the active state and force-velocity relations.Fed. Proc. 24, 1410–20.

    Google Scholar 

  • BRANDT, P. W., COX, R. N., KAWAI, M. & ROBINSON, T. (1982) Regulation of tension in skinned muscle fibers. Effect of cross-bridge kinetics on apparent Ca2+ sensitivity.J. gen. Physiol. 79, 997–1016.

    Google Scholar 

  • CHAPMAN, R. A. (1979) Excitation-contraction coupling in cardiac muscle.Prog. Biophys. molec. Biol. 35, 1–52.

    Google Scholar 

  • CHUCK, L. H. & PARMLEY, W. W. (1980) Caffeine reversal of length-dependent changes in myocardial contractile state in the cat.Circ. Res. 47, 592–8.

    Google Scholar 

  • CLOSE, R. I. (1972a) The relations between sarcomere length and characteristics of isometric twitch contractions of frog sartorius muscle.J. Physiol. 220, 745–62.

    Google Scholar 

  • CLOSE, R. I. (1972b) Dynamic properties of mammalian skeletal muscles.Physiol. Rev. 52, 129–97.

    Google Scholar 

  • CLOSE, R. I. (1981) Activation delays in frog twitch muscle fibres.J. Physiol. 313, 81–100.

    Google Scholar 

  • CLOSE, R. I. & LÄNNERGREN, J. I. (1983) Calcium transients and latency relaxation.Proc. Aust. Physiol. Pharmacol. Soc. 14, 42P.

    Google Scholar 

  • COLLINS, E. W. & EDWARDS, C. (1971) Role of Donnan equilibrium in the resting potentials of glycerol-extracted muscle.Am. J. Physiol. 221, 1130–3.

    Google Scholar 

  • DULHUNTY, A. F. & FRANZINI-ARMSTRONG, C. (1975) The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths.J. Physiol. 250, 513–39.

    Google Scholar 

  • EDMAN, K. A. P. (1980) Depression of mechanical performance by active shortening during twitch and tetanus of vertebrate muscle fibres.Acta physiol. scand. 109, 15–26.

    Google Scholar 

  • EDMAN, K. A. P. & KIESSLING, A. (1971) The time course of the active state in relation to sarcomere length and movement studied in single skeletal muscle fibres of the frog.Acta physiol. scand. 81, 182–96.

    Google Scholar 

  • EKELUND, M. C. & EDMAN, K. A. P. (1982) Shortening induced deactivation of skinned fibres of frog and mouse striated muscle.Acta physiol. cand. 116, 189–99.

    Google Scholar 

  • ELLIOTT, G. F., NAYLOR, G. R. S. & WOOLGAR, A. E. (1978) Measurements of the electric charge on the contractile proteins in glycerinated rabbit psoas using microelectrode and diffraction effects. InIons in Macromolecular and Biological Systems (edited by EVERETT, D. H. and VINCENT, B.), Colston Papers No. 29, pp. 329–339. Bristol: Wright.

    Google Scholar 

  • ENDO, M. (1972) Stretch-induced increase in activation of skinned muscle fibres by calcium.Nature New Biol. 237, 211–3.

    Google Scholar 

  • ENDO, M. (1973) Length dependence of activation of skinned muscle fibres by calcium.Cold Spring Harb. Symp. quant. Biol. 37, 505–10.

    Google Scholar 

  • ENDO, M. & IINO, M. (1980) Specific perforation of muscle cell membranes with preserved SR functions by saponin treatment.J. Musc. Res. Cell Motility 1, 89–100.

    Google Scholar 

  • ENDO, M., KITAZAWA, T., IINO, M. & KAKUTA, Y. (1979) Effect of ‘viscosity’ of the medium on mechanical properties of skinned skeletal muscle fibres. InCross-bridge Mechanism in Muscle Contraction (edited by SUGI, J. and POLLACK, G. H.), pp. 365–376. Philadelphia: University Park Press.

    Google Scholar 

  • FABIATO, A. (1981) Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle.J. gen. Physiol. 78, 457–97.

    Google Scholar 

  • FABIATO, A. & FABIATO, F. (1972) Excitation-contraction coupling of isolated cardiac fibers with disrupted or closed sarcolemmas. Calcium-dependent cyclic and tonic contractions.Circ. Res. 31, 293–307.

    Google Scholar 

  • FABIATO, A. & FABIATO, F. (1975a) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells.J. Physiol. 249, 469–95.

    Google Scholar 

  • FABIATO, A. & FABIATO, F. (1975b) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length.Nature 256, 54–6.

    Google Scholar 

  • FABIATO, A. & FABIATO, F. (1978) Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells.J. gen. Physiol. 72, 667–9.

    Google Scholar 

  • FABIATO, A. & FABIATO, F. (1979) Calcium and cardiac excitation-contraction coupling.Ann. Rev. Physiol. 41, 473–84.

    Google Scholar 

  • FERENCZI, M. A., GOLDMAN, Y. E. & SIMMONS, R. M. (1979) The relation between maximum shortening velocity and the magnesium adenosine triphosphate concentration in frog skinned muscle fibres.J. Physiol., Lond292, 71–2P.

    Google Scholar 

  • FRANK, J. S. & WINEGRAD, S. (1976) Effects of muscle length on45Ca efflux in resting and contracting skeletal muscle.Am. J. Physiol. 231, 555–9.

    Google Scholar 

  • FUCHS, F. (1977a) Cooperative interactions between calcium-binding sites on glycerinated muscle fibres: the influence of cross-bridge attachment.Biochim. Biophys. Acta 462, 314–22.

    Google Scholar 

  • FUCHS, F. (1977b) The binding of calcium to glycerinated muscles in rigor: the effect of filament overlap.Biochim. Biophys. Acta 491, 523–31.

    Google Scholar 

  • GILAI, A. & KIRSCH, G. E. (1978) Latency relaxation in single muscle fibres.J. Physiol. 282, 197–206.

    Google Scholar 

  • GILLIS, J. M., THOMASON, D., LEFEVRE, J. & KRETSINGER, R. H. (1982) Parvalbumins and muscle relaxation: a computer simulation study.J. Musc. Res. Cell Motility 3, 377–98.

    Google Scholar 

  • GORDON, A. M. & RIDGWAY, E. B. (1976) Length-dependent electro-mechanical coupling in single muscle fibres.J. gen. Physiol. 68, 653–69.

    Google Scholar 

  • GORDON, A. M., HUXLEY, A. F. & JULIAN, F. J. (1966a) Tension development in highly stretched vertebrate muscle fibres.J. Physiol. 184, 143–69.

    Google Scholar 

  • GORDON, A. M., HUXLEY, A. F. & JULIAN, F. J. (1966b) The variation in isometric tension with sarcomere length in vertebrate muscle fibres.J. Physiol. 184, 170–92.

    Google Scholar 

  • GULATI, J. & BABU, A. (1982) Tonicity effects on intact single muscle fibres: relation between force and cell volume.Science 215, 1109–12.

    Google Scholar 

  • GULATI, J. & PODOLSKY, R. J. (1981) Isotonic contraction of skinned muscle fibres on a slow time base. Effects of ionic strength and calcium.J. gen. Physiol. 78, 233–58.

    Google Scholar 

  • GULD, C. & STEN-KNUDSEN, O. (1960) Correlation of isometric twitch tension and latency relaxation to sarcomere length in frog muscle fibres.Acta physiol. scand. 50, Suppl. 175, 63–5.

    Google Scholar 

  • HÄKANSSON, C. H. (1957) Action potential and mechanical response of isolated cross striated frog muscle fibres at different degrees of stretch.Acta physiol. scand. 41, 199–216.

    Google Scholar 

  • HARTREE, W. & HILL, A. V. (1921) The nature of the isometric twitch.J. Physiol. 55, 389–411.

    Google Scholar 

  • HAUGEN, P. (1982) The dependence of the latency relaxation on temperature in single muscle fibres of the frog.Acta physiol. scand. 114, 179–86.

    Google Scholar 

  • HAUGEN, P. & STEN-KNUDSEN, O. (1976) Sarcomere lengthening and tension drop in the latent period of isolated frog skeletal muscle fibres.J. gen. Physiol. 68, 247–65.

    Google Scholar 

  • HENNEKES, R., KAUFMANN, R. & LAB, M. (1981) The dependence of cardiac membrane excitation and contractile ability on active muscle shortening (cat papillary muscle).Pflügers Arch. 392, 22–8.

    Google Scholar 

  • HESS, A. (1970) Vertebrate slow muscle fibres.Physiol. Rev. 50, 40–62.

    Google Scholar 

  • HIBBERD, M. G. & JEWELL, B. R. (1982) Calcium- and length-dependent force production in rat ventricular muscle.J. Physiol. 329, 527–40.

    Google Scholar 

  • HILL, A. V. (1964) The effect of tension in prolonging the active state in a twitch.Proc. R. Soc. 159, 589–95.

    Google Scholar 

  • HOYLE, G., MCNEILL, P. A. & SELVERSTON, A. I. (1973) Ultrastructure of barnacle giant muscle fibres.J. Cell Biol. 56, 74–91.

    Google Scholar 

  • HUI, C. S. & GILLY, W. F. (1979) Mechanical activation and voltage-dependent charge movement in stretched muscle fibres.Nature 281, 223–5.

    Google Scholar 

  • JEWELL, B. R. & WILKIE, D. R. (1960) The mechanical properties of relaxing muscle.J. Physiol. 152, 30–47.

    Google Scholar 

  • JULIAN, F. J. (1971) The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres.J. Physiol. 218, 117–45.

    Google Scholar 

  • JULIAN, F. J. & MOSS, R. L. (1980) Sarcomere length-tension relations of frog skinned muscle fibres at lengths above the optimum.J. Physiol. 304, 529–39.

    Google Scholar 

  • JULIAN, F. J. & MOSS, R. L. (1981) Effects of calcium and ionic strength on shortening velocity and tension development in frog skinned muscle fibres.J. Physiol. 311, 179–99.

    Google Scholar 

  • LAKATTA, E. G. & JEWELL, B. R. (1977) Length-dependent activation. Its effect on the length-tension relation in cat ventricular muscle.Circ. Res. 40, 251–7.

    Google Scholar 

  • LAKATTA, E. G. & SPURGEON, H. A. (1980) Force staircase kinetics in mammalian cardiac muscle: modulation by muscle length.J. Physiol. 299, 337–52.

    Google Scholar 

  • LANGER, G. A. (1980) The role of calcium in the control of myocardial contractility: An update.J. molec. cell. Cardiol. 12, 231–9.

    Google Scholar 

  • LANGER, G. A. & SERENA, S. D. (1967) Relationship of calcium exchange to changes in length, tension and work in heart muscle.Am. J. Physiol. 213, 1125–30.

    Google Scholar 

  • LÄNNERGREN, J. (1975) The effect of stretch on potassium contracture tension in twitch and slow muscle fibres of Xenopus laevis.Acta physiol. scand. 95, 347–9.

    Google Scholar 

  • LÄNNERGREN, J. (1978) The force-velocity relation of isolated twitch and slow muscle fibres of Xenopus laevis.J. Physiol. 283, 501–21.

    Google Scholar 

  • LOPEZ, J. R., WANEK, L. A. & TAYLOR, S. R. (1981) Skeletal muscle: Length-dependent effects of potentiating agents.Science 214, 79–82.

    Google Scholar 

  • LÜTTGAU, H. C. & MOISESCU, D. G. (1978) Ion movements in skeletal muscle in relation to the activation of contraction. InPhysiology of Membrane Disorders (edited by ANDREOLI, T. E., HOFFMAN, J. F. and FANESTIL, D. D.), pp. 732–754. New York: Plenum Press.

    Google Scholar 

  • MATSUBARA, I. & ELLIOT, G. F. (1972) X-ray diffraction studies on skinned single fibres of frog skeletal muscle.J. molec. Biol. 72, 657–69.

    Google Scholar 

  • MAUGHAN, D. W. & GODT, R. E. (1981) Inhibition of force production in compressed skinned muscle fibers of the frog.Pflügers Arch. 390, 161–3.

    Google Scholar 

  • MOISESCU, D. G. & THIELECZEK, R. (1979) Sarcomere length effects on the Sr2+- and Ca2+-activation curves in skinned frog muscle fibres.Biochim. Biophys. Acta 546, 64–76.

    Google Scholar 

  • MORGAN, J. P. & BLINKS, J. R. (1982) Intracellular Ca2+ transients in the cat papillary muscle.Can. J. Physiol. Pharmacol. 60, 524–8.

    Google Scholar 

  • MOSS, R. L. (1979) Sarcomere length-tension relations of frog skinned muscle fibres during calcium activation at short lengths.J. Physiol. 292, 177–92.

    Google Scholar 

  • MULIERI, L. A. (1972) The dependence of the latency relaxation on sarcomere length and other characteristics of isolated muscle fibres.J. Physiol. 223, 333–54.

    Google Scholar 

  • NATORI, R. (1954) The property and contraction process of isolated myofibrils.Jikei. Med. J. 1, 119–26.

    Google Scholar 

  • PAGE, S. G. (1965) A comparison of the fine structure of frog slow and twitch muscle fibres.J. Cell Biol. 26, 477–97.

    Google Scholar 

  • PARMLEY, N. W. & CHUCK, L. H. (1973) Length-dependent changes in myocardial contractile state.Am. J. Physiol. 224, 1195–9.

    Google Scholar 

  • PRENDERGAST, F. G. & MANN, K. G. (1978) Chemical and physical properties of aequorin and the green fluorescent protein isolated fromAequorea forskalea.Biochemistry 17, 3448–53.

    Google Scholar 

  • RACK, P. M. & WESTBURY, D. R. (1969) The effects of length and stimulus rate on tension in isometric cat soleus muscle.J. Physiol. 204, 443–60.

    Google Scholar 

  • RAMSEY, R. W. & STREET, S. F. (1940) The isometric length-tension diagram of isolated skeletal muscle fibers of the frog.J. cell. comp. Physiol. 15, 11–34.

    Google Scholar 

  • REUTER, H. (1974) Exchange of calcium ions in the mammalian myocardium. Mechanisms and physiological significance.Circ. Res. 34, 599–605.

    Google Scholar 

  • RIDGWAY, E. B. & GORDON, A. M. (1975) Muscle activation: Effects of small length changes on calcium release in single fibres.Science 189, 881–4.

    Google Scholar 

  • RÜDEL, R. & TAYLOR, S. R. (1971) Striated muscle fibers: facilitation of contraction at short lengths by caffeine.Science 172, 387–8.

    Google Scholar 

  • STEPHENSON, D. G. & FORREST, Q. G. (1980) Different isometric force-Ca2+ relationships in slow- and fast-twitch skinned muscle fibres of the rat.Biochim. Biophys. Acta 589, 358–62.

    Google Scholar 

  • STEPHENSON, D. G. & SUTHERLAND, P. J. (1981) Studies on the luminescent response of the Ca2+-activated photoprotein obelin.Biochim. Biophys. Acta 678, 65–75.

    Google Scholar 

  • STEPHENSON, D. G. & WILLIAMS, D. A. (1981) Calcium-activated force responses in fast- and slow-twitch skinned muscle fibres of the rat at different temperatures.J. Physiol. 317, 281–302.

    Google Scholar 

  • STEPHENSON, D. G. & WILLIAMS, D. A. (1982) Effects of sarcomere length on the force-pCa relation in fast- and slow-twitch skinned muscle fibres from the rat.J. Physiol. 333, 637–53.

    Google Scholar 

  • STEPHENSON, D. G. & WILLIAMS, D. A. (1983) Slow amphibian muscle fibres become less sensitive to Ca2+ with increasing sarcomere length.Pflügers Arch. 397, 248–50.

    Google Scholar 

  • STEPHENSON, D. G., WENDT, I. R. & FORREST, Q. G. (1981) Non-uniform ion distributions and electrical potentials in sarcoplasmic regions of skeletal muscle fibres.Nature 289, 690–2.

    Google Scholar 

  • STEPHENSON, E. W. (1981) Ca dependence of stimulated45Ca efflux in skinned muscle fibres.J. gen. Physiol. 77, 419–43.

    Google Scholar 

  • TAYLOR, S. R. (1974) Decreased activation in skeletal muscle fibres at short lengths. InThe Physiological Basis of Starling's Law of the Heart, Ciba Foundation Symposium 24, pp. 93–116. Amsterdam: Associated Scientific Publishers.

    Google Scholar 

  • TAYLOR, S. R. & RÜDEL, R. (1970) Striated muscle fibers: Inactivation of contraction induced by shortening.Science 167, 882–4.

    Google Scholar 

  • TAYLOR, S. R., RÜDEL, R. & BLINKS, J. R. (1975) Calcium transients in amphibian muscle.Fed. Proc. 34, 1379–81.

    Google Scholar 

  • TAYLOR, S. R., LOPEZ, J. R., GRIFFITHS, P. J., TRUBE, G. & CECCHI, G. (1982) Calcium in excitation-contraction coupling of frog skeletal muscle.Can. J. Physiol. Pharmacol. 60, 489–502.

    Google Scholar 

  • WENDT, I. R. & BARCLAY, J. K. (1980) Effects of dantrolene on the energetics of fast- and slow-twitch muscles of the mouse.Am. J. Physiol. 238, C56–61.

    Google Scholar 

  • WENDT, I. R. & STEPHENSON, D. G. (1983) Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibres of the rat.Pflügers Arch. 398, 210–6.

    Google Scholar 

  • WIER, W. G. (1979) Intracellular calcium transients accompanying contraction of mammalian cardiac muscle.Fed. Proc. 38, 1389.

    Google Scholar 

  • WILLIAMS, D. A., SUTHERLAND, P. J. & STEPHENSON, D. G. (1979) Does the sarcomere length dependent shift of Ca-activation curves in skeletal muscle involve myofibrillar Ca2+ movements.Proc. Aust. Physiol. Pharmacol. Soc. 10, 130P.

    Google Scholar 

  • WINEGRAD, S. (1971) Studies of cardiac muscle with a high permeability to calcium produced by treatment with ethylenediaminetetraacetic acid.J. gen. Physiol. 58, 71–93.

    Google Scholar 

  • YOSHIOKA, T. (1982) Width of the junctional gap of the triad at various sarcomere lengths in frog skeletal muscle.Jap. J. Physiol. 32, 475–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephenson, D.G., Wendt, I.R. Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J Muscle Res Cell Motil 5, 243–272 (1984). https://doi.org/10.1007/BF00713107

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713107

Keywords

Navigation